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• Define a distribution over functions

• Fully defined by a prior mean function and a covariance kernel.

• GP Learning: learn the hyperparameters of the mean function and covariance kernel.

Gaussian Processes



Hyper-Parameter Estimation

• MLE Type 2 (Evidence/Marginal Likelihood).

• Cross-Validation.

• MAP Estimation.



• Most common hyper-parameter optimization process.

• No additional degrees of freedom

• Research Question: How do the ML estimates vary as a function of the input data?

MLE Type-2



• Theoretical conditions for MLE in GPs to be ill-posed.

• Extension of these conditions to other methods:

⚬ CV

⚬ MAP

• Use of regularisation to fix ill-posedness.

Paper Overview
Maximum Likelihood Estimation in Gaussian Process Regression is Ill-Posed



• Noiseless data.

⚬ No observation noise, data represents truthful observations of an underlying function.

• Non-asymptotic setting.

⚬ Finite number of datapoints.

• Estimation of one single lengthscale parameter.

Theoretical Settings



M-Constant Dataset



Maximum Likelihood Estimation



Trade-offs in the loss function



Intuition 

Figure 1: Visualization of m-constant data as lengthscale varies, Deisenroth et al. [2]



Trade-offs in the Log Likelihood Function
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Formally defining ill-posedness

An inference or estimation problem is well-posed if:

•  a solution exists

•  the solution is unique

•  the solution depends on continuously on the data, i.e. the posterior is locally Lipschitz 

in the data with respect to the Hellinger distance



MLE’s ill-posedness

• As the lengthscale tends to infinity, the GP’s posterior covariance converges to 0.

⚬ No uncertainty estimation.

⚬ Small perturbations in the data result in drastic changes in the posterior.

• Thus, MLE is ill-posed. 



What does not help?

This same phenomenon still occurs when we:

￭ Use cross-validation instead of MLE.

￭ Also estimate the prior mean.

￭ Estimate a scaling parameter 𝜎 alongisde the lengthscale.



Placing a hyper-prior on the lengthscale parameter changes our method to MAP estimation, 
where we find the max of:

log 𝑝 𝜆 𝑌 = −
1
2
ℓ 𝜆 𝑌 + log 𝑝 𝜆 + 𝑐𝑜𝑛𝑠𝑡.

As lengthscale grows, MAP estimate of lambda will be finite even for m-constant data 
(preventing ill-posedness).

What does help?
Regularization via MAP



What does help?

• Ill-posedness is well-posed if observed data is assumed to have added Gaussian noise with 
variance 𝛿'.

• Modified log likelihood function is: 

 ℓ 𝜆 𝑌 = 𝑌()(𝐾$ 𝑋, 𝑋 + 𝛿'𝐼*) "+𝑌( +	 log det(𝐾$ 𝑋, 𝑋 + 𝛿'𝐼*)

• However, inference is corrupted by artificial noise.

Regularization via added observation noise 



Pitfalls
However, even when we add observation noise, the covariance matrix can still be very 
close to singular if the lengthscale is too large.

Figure 2:  Covariance matrix’s condition number as a function of lengthscale parameter.



Set an upper bound for the parameter estimate.

⚬ Likely to simply obtain that value, which might be somewhat arbitrary.

Check if data is m-constant before training the GP.

⚬ If so, warn the user that training will diverge.

Practical Recommendations
How to use these results in practice?



• Obtain theoretical results on the behaviour of MLE for “close” to m-constant datasets. 

• Study estimation of parameters for other types of kernels (e.g. non-stationary).

Future Work
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Appendix 1: Visualizing m-constant GP's

Figure A1: GP posterior mean across various lengthscales, for m-constant data. Karvonen et al. [1]



Appendix 2: Generalizations and Extensions

• Linear Information and General Kernels

• Product Kernels and Multiple Lengthscales

• Infinitely Smooth Kernels



Appendix 2.1: Linear Information and General Kernels



Appendix 2.2: Product Kernels and Multiple Lengthscales



Appendix 2.3: Infinitely Smooth Kernels



Appendix 4: What are said "mild regularity conditions"?

In short, we want our kernel Φ 
to have a polynomially decaying 
Fourier transform.

Also, our kernel must be 
stationary and positive definite



Appendix 4b: Why is this relevant?

This allows us to bound the 
data fit term!

We can use the equivalence 
between Gaussian process 
interpolation and optimal 
interpolation in an RKHS in 
our proofs



Appendix 5a: What was that Hellinger distance stuff?



Appendix 5b: How does it relate to ill-posedness?

Definition of Lipschitz 
continuous

Define two sequences that 
converge to a m-constant 
data set



Appendix 5b: How does it relate to ill-posedness? (cont.)

Be tricky with selection of 
the sequences

This is a consequence of 
the covariance equaling 0, 
as any data that is not m-
constant will have a 
Hellinger distance of 1


