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(Gaussian Processes

« Define a distribution over functions
 Fully defined by a prior mean function and a covariance kernel.

* GP Learning: learn the hyperparameters of the mean function and covariance kernel.
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Hyper-Parameter Estimation

 MLE Type 2 (Evidence/Marginal Likelihood).
« Cross-Validation.

« MAP Estimation.



MLE Type-2

 Most common hyper-parameter optimization process.
« No additional degrees of freedom

- Research Question: How do the ML estimates vary as a function of the input data?



Paper Overview

Maximum Likelihood Estimation in Gaussian Process Regression is lll-Posed

» Theoretical conditions for MLE in GPs to be ill-posed.

 Extension of these conditions to other methods:

o CV
o MAP

» Use of regularisation to fix ill-posedness.
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Theoretical Settings

 Noiseless data.

o No observation noise, data represents truthful observations of an underlying function.

« Non-asymptotic setting.

o Finite number of datapoints.

« Estimation of one single lengthscale parameter.



M-Constant Dataset

Definition 2.1 (Constant data)

Given a (prior) mean function m, we say that the data Y are
m-constant if there is a constant ¢ € R such that

Y=Y —m(X)=(c,...,c) €R".
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Maximum Likelihood Estimation

Theorem 2.3 (Maximum likelihood estimation)

Suppose that the kernel K satisfies Assumption 2.2 and n > 2. If the
data Y are m-constant, then

All_)moo l(A|Y)=—00 and Ay = oo.

If the data Y are not m-constant, then

lim 4(A]Y) =00 and Ay < .
A—r 00
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Trade-offs in the loss function

Definition: Maximum Likelihood Estimation

A maximum likelihood estimator 8 satisfies Oy € arg min £(0|Y)
0O
with
200)Y) = Y.] Ko(X, X)) 'Y + log det Ky(X, X),

where Y, = (y; — m(x;))"_, € R".
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Figure 1: Visualization of m-constant data as lengthscale varies, Deisenroth et al. [2]
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Trade-ofts in the Log Likelihood Function

« We can represent the kernel function as CD(%).

* Thus, our covariance function tendsto®(0)as A > o .




&

Trade-ofts in the Log Likelihood Function

We can represent the kernel function as CD(%).

Thus, our covariance function tendsto ®(0)as i1 - oo

It & satisfies certain "mild regularity conditions", then in the presence of m-constant
data, /1ML — 0O

« Proof involves Reproducing Kernel Hilbert Space techniques.
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Trade-ofts in the Log Likelihood Function

We can represent the kernel function as ®(=>).

Thus, our covariance function tendsto ®(0)as A —» oo

It ® satisfies certain "mild regularity conditions", then in the presence of m-constant
data, )I'ML = OO

« Proof involves Reproducing Kernel Hilbert Space techniques.
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Formally defining ill-posedness

An inference or estimation problem is well-posed if:

« asolution exists

« the solution is unique

« the solution depends on continuously on the data, i.e. the posterior is locally Lipschitz

In the data with respect to the Hellinger distance
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MLE'’s ill-posedness

« As the lengthscale tends to infinity, the GP’s posterior covariance converges to O.

o No uncertainty estimation.

o Small perturbations in the data result in drastic changes in the posterior.

« Thus, MLE is ill-posed.




What does not help?

This same phenomenon still occurs when we:
= Use cross-validation instead of MLE.
= Also estimate the prior mean.

= Estimate a scaling parameter ¢ alongisde the lengthscale.

Additional Results



What does help?

Regularization via MAP

Placing a hyper-prior on the lengthscale parameter changes our method to MAP estimation,
where we find the max of:

1
logp(A|Y) = —Ef(AIY) + logp(A) + const.

As lengthscale grows, MAP estimate of lambda will be finite even for m-constant data
(preventing ill-posedness).

Additional Results
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What does help?

Regularization via added observation noise

* Ill-posedness is well-posed if observed data is assumed to have added Gaussian noise with
variance 62
« Modified log likelihood function is:

L(AlY) = VI (K (X, X) + 62%L,) ~1Y,, + logdet(K (X, X) + 6°L,)

 However, inference is corrupted by artificial noise.

Additional Results




Pitfalls

However, even when we add observation noise, the covariance matrix can still be very
close to singular if the lengthscale is too large.

1e10 Condition Number of the GP Covariance Matrix vs. Length-scale Parameter
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Figure 2: Covariance matrix’s condition number as a function of lengthscale parameter.

Additional Results
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Practical Recommendations
How to use these results in practice?

Set an upper bound for the parameter estimate.

o Likely to simply obtain that value, which might be somewhat arbitrary.

Check if data is m-constant before training the GP.

v

o If so, warn the user that training will diverge.
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Future Work

 Obtain theoretical results on the behaviour of MLE for “close” to m-constant datasets.

« Study estimation of parameters for other types of kernels (e.g. non-stationary).




References

[1] Karvonen T, Oates CJ. Maximum Likelihood Estimation in Gaussian Process Regression is IlI-Posed. 2023.

[2] Deisenroth M, Luo Y, van der Wilk M, A Practical Guide to Gaussian Processes, 2020
https://infallible-thompson-49de36.netlify.app/

[3] Johannes B, Minnen D, Singh S, Sung Oh Hwang, Johnston N. Variational image compression with a scale
hyperprior.

[4] Introduction to Gaussian Process Regression https://juanitorduz.github.io/gaussian process reg/



https://infallible-thompson-49de36.netlify.app/
https://juanitorduz.github.io/gaussian_process_reg/

&

Appendix 1. Visualizing m-constant GP's
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Figure Al: GP posterior mean across various lengthscales, for m-constant data. Karvonen et al. [1]
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Appendix 2: Generalizations and Extensions

 Linear Information and General Kernels
* Product Kernels and Multiple Lengthscales

* Infinitely Smooth Kernels
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Appendix 2.1: Linear Information and General Kernels

Proof of Theorem 5.2: MLE of A =& o

N 85N b;’:
KA(Ca L) — (b)\ K/\(X/’X/))

® «): Variance of GP derivative at a point.

® b,: Covariance between derivative and function values at different
points.

* Kx(X’,X'): Covariance matrix for non-constant parts of data.

The structure ensures non-degeneracy as A increases, with
well-defined limits for the Matern kernel as A\ — o0.:

AmL(c) = argmin I(AlYr) = o0



Appendix 2.2: Product Kernels and Multiple Lengthscales

Proof of Theorem 5.3: MLE of A — o0

® Product of stationary kernels Kj, each with a lengthscale ;.

® MLE of lengthscales by minimizing modified log likelihood.
® X =X; X...xX Xy represents a Cartesian product of input spaces.

® Data Y is m-constant if differences are not dependent on certain
dimensions.

® Infinite MLE of ), if data Y is m-constant along dimension p.

The theorem provides a framework for modelling variations at
different scales and supports scale estimation from
multi-dimensional data.



Appendix 2.3: Infinitely Smooth Kernels

Proof of Theorem 5.4: MLE of A — o0

®(z) = exp(—||z]|*) (1)

1

*) = 131

(2)

® Kernel's Fourier transform does not decay exponentially.

® Ensures that constant functions are included in the RKHS on a
bounded set.

Limit Behavior: As the lengthscale parameter A goes to infinity:

lim ym Ku(X, X) tym = lim ym Ka(X, X) 'ym =Dy W'Dy  (3)
A—» 00 A— 00

4

® With m-constant Y, as ) increases, the data-fit term tends to a
constant.



Appendix 4: What are said "mild regularity conditions"?

Assumption 2.2 (Stationary Sobolev kernel) There are a continuous and integrable
function ®: R? — R and constants C1, Co > 0 and a > d/2 such that K(z,y) = ®(z — y)
for all z,y € R¢ and

Ci(1+ [|€]17)~> < B(¢) < Co(1 + €)%~ (2.9) In short, we want our kernel ©®
to have a polynomially decaying

Fourier transform.

for all £ € R,

If d =1 and Assumption 2.2 holds for « = p 4+ 1 € N, the kernel is p times differentiable
in that the derivative

o%p
0xPOyP

exists. As a consequence, the process fgp ~ GP(m, K) is p times mean-square differen-
tiable (Stein, 1999, Section 2.4). That a kernel satisfying (2.9) is called a Sobolev kernel
is because its RKHS is norm-equivalent to the Sobolev space W(R%) of order a. The Also, our kernel must be
norm-equivalence is a crucial ingredient in several of our proofs and is reviewed, together stationary and positive definite
with Sobolev spaces, in more detail in Section 7.3. One can also prove that the sample paths
of fgp are elements of certain Sobolev spaces (Scheuerer, 2011; Steinwart, 2019; Henderson,
2022). The Fourier transform of the function

21—V

vl|z|| ) KC, vizll), =z d,
ty (VIR K (Valal), 2R

which defines a Matérn kernel in (2.3), is (e.g., Stein, 1999, p. 49)

I'(v+d/2)
(€) = o? m4/2T (v)

K(:C’ y) mig — (_1)pq)2p(0)

®(z) = o?

(2v)” (2v + ||g||?) T2, (2.10)

)

Therefore a Matérn kernel with smoothness v > 0 satisfies Assumption 2.2 with a = v+ d/2.



Appendix 4b: Why is this relevant?

It is usually not straightforward to determine whether or not a given function is an element
of H(K,)). However, the RKHS of a kernel which satisfies Assumption 2.2 on the rate of
decay of its Fourier transform is a Sobolev space; see Section 7.3. For more information on
RKHSs we refer the reader to Berlinet and Thomas-Agnan (2004) and Chapters 10 and 16
in Wendland (2005).

We are interested in optimal interpolation in an RKHS. Let f: 2 — R be any function (i.e.,
not necessarily an element of the RKHS) that is to be interpolated at a set of distinct points
X = {z;}; C Q. The kernel interpolant s¢ x is the unique minimum norm interpolant to f
at these points:

Sfx = argmin {||s||H(KQ) : s(z;) = f(w;) for every i =1,...,n}. (7.2)
s€EH(K,Q) ’

The kernel interpolant has the explicit linear-algebraic form
stx(r) = K(z, X)TK(X, X)) f(X), (7.3)

which equals the conditional mean in (2.4) when m = 0. This is the famous equivalence
between Gaussian process interpolation and optimal interpolation in an RKHS whose origins
can be traced back at least to the work of Kimeldorf and Wahba (1970). From (7.3) it is
straightforward to compute that (e.g., Fasshauer, 2011, Section 5.1)

s, x i ) = FOTE (X, X) 7 f(X), (7.4)

which equals the data-fit term in (2.8) for m = 0. Note that a particular implication

We can use the equivalence
between Gaussian process
interpolation and optimal
interpolation in an RKHS in
our proofs

This allows us to bound the
data fit term!
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Appendix 5a: What was that Hellinger distance stuft?

Let Q1 and Q2 be two probability distributions on R? that are absolutely continuous
with respect a reference measure v on R? and let ¢g; and g2 denote their Radon—Nikodym
derivatives with respect to v. The squared Hellinger distance between ()1 and @) is

1

dpel(Q1,Q2)% = 5 /Rq (q1(2)"? - ga(2)/?)* dv(z). (2.15)

The Hellinger distance does not depend on the reference measure v, which means that for

distributions that admit Lebesgue density functions we may set dv(xz) = dz. For univariate
Gaussians @)1 = N(u1,21) and Q2 = N(ug, X2), we have

_ V2(Z, 514 (11 — p2)?
dHel(QlaQ2)2 =1- \/21 T, eXp (_ 4(21 + 22)) (216)




Appendix S5b: How does it relate to ill-posedness?

Let Q(Y) stand for a posterior measure given an observed data vector Y € R™. The posterior
is said to be well-posed if for every € > 0 there exists L > 0 such that

dua (Q(Y), Q(Y")) < L|IY - Y| (2.17)

for any data vectors Y, Y’ € R™ for which ||[Y —Y’|| <e.
Let us consider the Gaussian process predictive distribution at some unobserved point
zo ¢ X as the posterior and set

Qapr(Y) = Nty (v (£0)s Payr (v (€0)?); (2.18)

where we use Ay, (Y) to denote that a maximum likelihood estimate depends on the data Y.

We may assume that Amr(Y) (or, if the modified log-likelihood function has multiple global
minimum points, the largest of these) is a continuous function of the data, for otherwise
predictions would not be continuous in the data, let alone Lipschitz. Let € > 0 and let
(Yi)22; and (Y;)52, be two data sequences which satisfy ||Y; — Y/| < ¢ for every k € N and
which converge to an m-constant data set:

lim Y — m(X) = lim Y, —m(X) = (c,...,c) € R

k—o00 k—o0

Definition of Lipschitz
continuous

Define two sequences that
converge to a m-constant
data set




Appendix 5b: How does it relate to ill-posedness? com,

for some ¢ € R. By Theorems 2.3 and 2.6 and the assumed continuity of Ay, (YY) in the data,
these sequences can be selected such that

Yk = P,\ML(Yk)(%)z =Cie™® and X} := PAML(Y,;)(CUO)Q = Cyk~!

for some positive constants C; and Cs. Since e™® < 1 for all x > 0, we get from (2.16)
and (2.18) that

2(3,. 3 \1/4 1/41.—1/4,—k/4
dHel(QGP(Yk),QGp(Yé))Q >1— ‘[( k k) —1_ \/5(0102) k e
VI, + X VCie ™ + Cok™!

>1— \/5011/402_1/4k1/4e—k/4,

where the second term tends to zero as £k — oo. Therefore

duel(Qcp(Yi), Qer(Yy)) 1 as k — oo

even though ||Y; — Y/|| = 0 as £ — oo. This shows that the Lipschitz condition (2.17) fails
to hold when the data domain is

R"™ ={Y € R" : Y is not m-constant } C R",

the set of data sets that are not m-constant. That is, we have shown that the mapping
Qgp: R™ — P defined in (2.18) is not Lipschitz, where P is the space of probability
distributions on R equipped with the Hellinger distance.

Be tricky with selection of
the sequences

This is a consequence of
the covariance equaling O,
as any data that is not m-
constant will have a
Hellinger distance of 1




