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Abstract

Reinforcement Learning has been applied to great success to tasks where a reward
signal reward is clearly defined or can be hand-crafted. However, its application to tasks
such as alignment to ethical standards has been limited by the inability to craft a reward
function that can balance multiple (and often subjective) preferences. A possible solution
is Inverse Reinforcement Learning (IRL), a class of problems in which one learns a reward
function from observed agent behaviour. In this work we propose a method for learning a
reward function using diffusion models. Recent work has proposed using diffusion models
to learn high-reward policies in sequential decision-making tasks. The general method
involves training a diffusion model on a dataset of trajectories in order to learn a model
of the environment dynamics, and then using the classifier guidance property of diffusion
models to steer their output towards high-return policies. In this work we hypothesise that
for a choice of trajectory similarity metric, and given a diffusion model trained on arbitrary
trajectories in an environment, and example trajectories of a behaviour we wish to imitate,
one can learn a proxy reward function of the desired behaviour (IRL). This learnt reward
function can be used to steer the diffusion process towards the behaviour distribution,
making our method learn a reward function while also imitating behaviour. We study
the performance of our method across three different environments, evaluating both the
quality of the reward function learnt, as well as the quality of the output behaviour.
We show our method learns a reward function that induces optimal behaviour in simple
environments, outperforming state of the art IRL methods. We extend this method to
more complex environments, showing that its performance lags behind in such settings.
Finally, we present reasons for the failure modes of our method, and propose possible
fixes.

Code: The code for this project is publicly available at: https://github.com/
Sam-0liveira/diffuser_irl. This repository is a fork from the original Diffuser repos-
itory E Development of this project for all environments in this report was done in the
‘maze2d’ branch, and this branch should be used for CPU execution. The ’cluster’ branch
was created for running the project using machines with CUDA.

'https://github.com/jannerm/diffuser


https://github.com/Sam-Oliveira/diffuser_irl
https://github.com/Sam-Oliveira/diffuser_irl
https://github.com/jannerm/diffuser
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1 Introduction

Reinforcement Learning (RL) is a machine learning paradigm that excels at solving sequential
decision-making tasks [II, 2 3]. The general assumption is that such tasks can be formulated
with an agent that interacts with its surrounding environment, and that learns an optimal way
to behave based on rewards signals received from the environment. While RL has been applied
to great success to settings such as games [4] [5, 6], where there is a clear reward signal to guide
learning (e.g. game score, or win/lose), its application in real-world tasks is often limited by
the lack of a natural reward function. Tasks such autonomous driving, creative generation, or
alignment to human preferences are either highly subjective, or require considering multiple
preferences that can’t easily be condensed into one scalar function.

To solve the RL problem in the absence of a reward signal, a possible approach is to collect
examples of optimal behaviour in an environment, and learn to act in an identical way. This
paradigm is called imitation learning, and has been extensively used in areas such as robot
control [7, 8, 9]. However, policies are highly sensitive to changes in environment dynamics [10],
and thus any learnt behaviour is often rendered unusable when either environment dynamics
change, or when aiming to transfer previously acquired knowledge to new tasks.

An alternative approach is to instead use the collected examples of optimal behaviour to learn
the reward function under which such behaviour is optimal. Inverse Reinforcement Learning
(IRL) [10, 1] is the problem of learning a reward function from observed agent behaviour,
and is often used as an intermediate step in imitation learning [7, 8, [12]. Learning a reward
function (as opposed to directly learning to imitate the observed behaviour) provides better
robustness and generalization to environment changes [10], as the reward function provides
a more succinct representation of a task [12], 3] that can successfully be transferred to new
environments. Furthermore, reward learning can help better understand a system’s preferences,
with applications in alignment and safety [I4] [I5]. Most IRL methods learn by alternating
between reward learning, and policy optimisation based on the learnt reward. Early methods
focused on parameterising the reward function using a linear combination of features, and
learning based on Maximum Entropy IRL [16]. Guided Cost Learning [§] was introduced as an
adaption of the maximum entropy IRL framework to reward functions parameterised by neural
networks, significantly expanding the complexity of the tasks considered. Finn et al [17] showed
a close link between IRL and GAN [I§] training, inspiring further work on using adversarial
training methods for IRL [9, [19].

IRL suffers from many of the same issues as typical Reinforcement Learning (RL), namely
high computational costs [20] and poor sample complexity [21, 22]. Its high computational
complexity stems from its typical two-step iterative optimisation, where firstly a MDP is solved
for the current reward function (in order to find the optimal policy in such a MDP), and secondly
the value function estimate is updated based on some distance between the current policy and
the expert policy. Solving a MDP is exponential in the state dimension [12], limiting IRL’s
application to real-world (often continuous) problems. A large state dimension also leads to a
larger number of samples being required for learning. RL’s well documented sample inefficiency
[23, 24, 25] is also true in an IRL setting, making it the more valuable to create methods that
can learn even with few expert demonstrations.

In this work, we introduce a method for extracting a reward function from diffusion models
[26, 27]. Diffusion models have emerged in recent years as a valuable class of generative models.
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This popularity stems, in part, from their superior ability to generate high-quality samples, as
well as their superior training stability, when compared to previous generative models such as
GANSs [18] and VAEs [28]. Diffusion models have been applied to fields as distinct as natural
language processing [29] 30], drug discovery [31], [32], and computer vision [27, [33], B4]. One of
the main advantages of diffusion models is the ability to steer their output based on a classifier:
either by classifier-free guidance [35], or by classifier-guided sampling [26]. While the former
requires classifier-aware training of the diffusion model, the latter can be used to fine-tune the
output of an arbitrary diffusion model.

Recent work [36, [37] has applied diffusion models to sequential decision-making. Janner et al
[36] proposed training diffusion models to model a prior distribution over offline trajectories,
in a method called Diffuser. Using classifier-guided sampling, the Diffuser’s output trajectories
can be steered with a reward function, as shown in Figure [Il Firstly, the base diffusion model
is trained on a dataset of reward agnostic trajectories. Secondly, a reward function is parame-
terised by a neural network, trained in a supervised fashion using a dataset of trajectory-return
pairs, and then used to steer the diffusion model to output trajectories that maximise the return
under the learnt reward model. This work shows an alternative approach to generating high-
reward behaviour: instead of training a diffusion model directly on high-reward trajectories,
which might be scarce, one can train on lower-quality but abundant trajectories, and then steer
the model’s behaviour with a known reward function. Furthermore, one can use multiple value
functions, but the same base trained diffusion model, to obtain distinct behaviours at test time.
The guided sampling approach suggests that if one has access to a base trained Diffuser, and
expert trajectories that can be interpreted as the output of guided-sampling of this Diffuser,
the reward function ”used” for such behaviour can be extracted from the guiding process of
the Diffuser. That is, one can learn the reward function required to guide the diffusion process
from a base Diffuser’s distribution towards the expert trajectories’ distribution.
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Figure 1: Schematic of classifier-guided sampling using the Diffuser. Trajectories in a maze
are shown as a collection of dots representing the agent’s location, where the colour shows the
temporal progression of its location (from blue to red). Two identical base diffusion models are
used to denoise a noisy trajectory, with fixed starting state. A reward guide is added to the
bottom model, resulting in a trajectory that moves towards states with high reward.
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We introduce a method for extracting a reward function from the Diffuser. Alike the typical
Diffuser setting, where learning of the environment dynamics and planning are intertwined, we
suggest a method that can learn a value function, and optimise behaviour based on said function
without solving two separate problems. Thus, our method circumvents explicitly solving the
computationally slow MDP-solving step, while also implicitly using samples for both problems.
Learning is thus more sample efficient, as expert trajectories are used to both learn a value
function and to optimise behaviour based on the learnt function. Our method does not require
environment access, and is applicable to any classifier-guided diffusion model that has been
trained to learn an environment’s dynamics.

Our method resembles Nutti et al. [38]. Critically, we make two important distinctions. Firstly,
we only require one diffusion model, and use the expert trajectories to guide this diffusion model,
as opposed to training two diffusion models on different data distributions. Secondly, we aim to
learn an actual reward function, instead of a relative reward function?] These distinctions mean
our method only uses the expert trajectories to learn a reward model, as opposed to an entire
diffusion model, making our method more sample efficient and thus more applicable to low data
regimes. Furthermore, the training of a base diffusion model and of a single reward model is
expected to be faster than the serial training of two diffusion models, reducing computational
costs.

We propose a practical algorithm, with a loss function based on distance metrics in trajectory
space, for extracting a reward function from a Diffuser model. It does so by learning the guide
required to steer the base Diffuser towards outputting samples from the same distribution as the
expert trajectories. We evaluate our method’s performance by evaluating both the quality of the
guided behaviour, as well as the quality of the learnt reward function. We evaluate behaviour
quality by calculating the average reward of trajectories resulting from guided sampling of the
base Diffuser with the learnt reward model. We calculate the episode return correlation distance
(ERC) [39] as a proxy for the distance between a learnt reward functions and the true reward.
We compare our method’s performance to two imitation learning baselines (Behaviour Cloning

and GAIL [9]) and one IRL baseline (AIRL [19]).

We evaluate our method across three different environments, in different experimental setups.
In two Maze2D [40] environments (U-Maze and Large Maze), we train a base diffusion model
on exploratory reward-agnostic trajectories, and then learn a reward function by guiding the
base diffusion model towards outputting trajectories that move towards the bottom right corner
of the maze. We observe that our learnt reward model results in a guided diffusion process
that outputs samples that indeed mimic the expert dataset and move to this corner in the
case of the U-Maze. For the Large Maze, we show that issues with the learnt environment
dynamics prevent us from obtaining high-quality expert trajectories. We regardless train our
method on sub-par expert trajectories, leading to poor learning. In the HalfCheetah locomotion
environment [40], we train the base diffusion model on low-reward trajectories. We obtain a
dataset of expert high-reward trajectories, and learn a reward function by steering the base
model towards the high-reward behaviour. We observe unstable training, and our method fails
to learn a reward function that properly guides towards the expert trajectory dataset. For all
environments, we observe our method learns a more meaningful reward function (that is, a
reward function that is closer to the true reward) than AIRL.

This thesis is structured as follows: Section [ presents background and related work on RL,

2For technical details on the definition of a relative reward see Section or Nutti et al [38].
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IRL, diffusion models, and their intersection. Two different classes of metrics relevant to this
problem are introduced: in Section we introduce reward function similarity metrics (
metrics to assess how similar two reward functions are), whereas in Section [2.3|we introduce and
discuss trajectory space metrics (metrics that asses how different two trajectories are). Section
formally introduces the problem statement, and presents our proposed practical algorithm. Our
method is then evaluated on the U-Maze [40] environment as a proof-of-concept. In Section 4] we
study the empirical performance of our method in more complex environments, in particular
the Large Maze and HalfCheetah [40] environments. Section [5| sums up our contribution,
highlighting areas of future work.

2 Background

This section summarises presents introductions to each of the fields necessary for the under-
standing of our method, both providing some theoretical background as well as surveying
current methods in each of the fields. We start by introducing RL and the main algorithms in
the field (Section . We then present the IRL and imitation learning problems, motivating
them, and surveying not only the first methods used to solve them, but also the current state
of the art methods (Section . In this section we also present metrics to assess similarity
between value functions (Section [2.2.4)), which will be used to evaluate our method’s perfor-
mance. We then present metrics to assess similarity between trajectories (Section , which
are used as loss functions in our method, as seen in Algorithm 4] Finally, we present a thorough
explanation of diffusion models (Section , and then review the application of such methods

to RL (Section and IRL (Section [2.6)).

2.1 Reinforcement Learning

Reinforcement Learning is a sub-field of machine learning focused on sequential decision-
making. The general framework assumes the existence of an agent that interacts with its
surrounding environment, and that learns an optimal behaviour in this environment based on
reward signals received from the environment. While RL techniques have evolved from tabular
settings [41] to deep-learning based approximations [2], the most commonly used model has
remained the Markov decision process (MDP) [42].

2.1.1 Markov Decision Process (MDP) and Bellman Equations

A MDP is defined as a tuple M = (S, A, T, R,~), where its elements are such that

e S represents the set of states. S; represents the state at time t.
e A represents the set of actions. A; represents the action taken at time t.

e 7 represents the transition function S x A — Prob(S§), where its output defines a prob-
ability distribution over the set of next states.
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e R represents the reward function, which can be defined in either of the following ways:
S—>R, SESxA—-RorS xAxS — R, depending on whether one considers the reward
of a single state, the reward of a state-action tuple, or the reward of a specific transition
to the next state respectively.

e 7 € [0, 1] is the discount factor, representing the decreasing weight given to future rewards.

A MDP is based on the following two environment assumptions: the environment is Markovian,
such that the state at time step ¢ + 1 is fully determined by the state at time ¢, and fully
independent of the previous states given the current state S;; and the agent can observe the
entire environment at any point (fully observable environment).

The RL problem amounts to finding how the agent should behave under this MDP so that it
maximises the cumulative discounted reward, also known as return, expressed for an episode
with 7" steps as:

T
Gy = Z’ViRtHH (1)
i=0

The return is a random variable, and highly depends on the state S;, transition function
T (St4+1|St, Ar) and policy 7(A¢|S:) (that is, the choice of actions by the agent). Thus, one
can define the state value function V(s) as the expected return from a state s, such that:

T
V(s) =Egar [Gi] = Eganr [Z Y Riyi

1=0

(2)

= Ex [Rev1 + 7V (S041)[Se = 8] (3)

Similarly, one can define the state-action value function Q(s,a) as the expected return from a
state s taking action a:

Q(s,a) = Ex [Riy1 +7Q(Si1, Aryr)| S = s, Ay = a (4)

The recursive equations and are the Bellman equations [43]. Similarly, one can define
the Bellman optimality equations for the optimal state value function V*(s) = max V,(s) and

optimal state-action value function Q*(s,a) = max Q(s,a) such that:

V*(s) = Ex [Res1 + YV (Se41)[Se = 8] (5)
Q*(s,a) = Ex [Rir1 + vQ"(Stv1, Ar1)|S: = 5, Ay = a (6)

For any MDP, there is always at least one optimal policy, and the value function of all optimal
policies is the same. Thus, there is always at least one optimal deterministic function, obtained
from picking the action that maximises the state-action value function at each state.

If both 7 and R are known, then the environment is fully known. Under this condition, the
Bellman equations can be solved via dynamic programming [44]. The two main algorithms
used for solving the Bellman equations are policy iteration and value iteration [45].
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However, the application of such methods is limited to problems with relatively small state/action
spaces (under 100 thousand). Furthermore, in many problems the environment is not fully
known. In that case, one can use Monte Carlo (MC) methods. These consist of taking samples
of the discounted return from a state, and averaging such samples to obtain an estimate of the
value of a state.

TD Learning [46] is an alternative to MC methods that takes inspiration from human learning,.
TD methods take a limited number of steps from a state, and then bootstrap from the estimated
value function of the state that has been reached. Its simplest form, TD(0) [45], can be described
by the update

V(st) = V(st) + a(Rep1 + 7V (Se1) — V(se)) (7)

where « is a learning rate. Transferring the general TD Learning update to a state-action value
function setting yields the SARSA [45] algorithm. Transferring SARSA to off-policy learning
(a learning setting where the agent’s behaviour policy differs from the policy it is trying to
evaluate) yields Q-learning [47].

Both MC and TD based methods sample from the environment, and thus do not directly aim
to learn a model of the environment. This is the case for a large part of current RL methods,
although section presents some of the work being done on model-based RL. Model-free
methods are often divided in value-based and policy-based methods.

2.1.2 Value-based RL

Value-based methods rely on representing the value function, and aim to find the optimal value
function V*. Both SARSA and Q-Learning are examples of such methods. One of the first
main RL breakthroughs was Deep Q-Learning (DQN) [2], which combines neural networks
and Q-Learning. The use of a neural network to model the state-action value function allows
for non-finite state/action spaces. DQN’s success was largely due to the incorporation of two
seemingly simple ideas: experience replay, and the use of a target network. The former reduced
correlation between training samples, whereas the latter reduced the effects of the ”deadly
triad” [48], both resulting in more stable training.

DQN was the first RL system to achieve above-human performance in most Atari games.
Further work introduced the Double DQN (DDQN) [49], where the target network, previously
obtained by freezing parameters, was replaced by an entirely separate network, and optimisation
of the two networks was done in turns. This helped solve the issue of overestimation of () values
in Q-Learning.

Much work has resulted from extensions to the original DQN. Hester et al [50] extended on
the method to allow for multi-step TD Learning, whereas boostrap DQN [51] combined DQN
with Thompson sampling to increase exploration. Rainbow [52] combined many of the afore-
mentioned extensions (experience replay, multi-step learning), as well as dueling networks [53],
noisy networks [54], and distributional DQN [55], to achieve state of the art performance in
Atari Games, beating both DQN and DDQN.
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2.1.3 Policy-based RL

A distinct class of methods bypasses the need to calculate a value function, and instead directly
aims to optimise the agent’s policy. These methods are commonly labeled policy gradient
methods. The general idea is that one can parameterise the policy m(a|s), and directly optimise
it to maximise the expected return:

J(0) = Eny(s) [Re] = Ey(s)

ZQ<s,am<a|s>] (®)

By using the log-derivative trick, this optimisation procedure can easily be turned into a typical
gradient descent approach by following the gradient:

VQJ(Q) = Eﬂ-e(s) [RtVQ log W@(At)] (9)

The REINFORCE [45] algorithm breaks the expectation operator in @ by taking Monte-Carlo
samples of the return and following this stochastic gradient direction. The Policy Gradient
Theorem [45] shows that the policy gradient for an average reward formulation is:

Vo (0) = Er, [gz, (51, A) Vi log mo(Ae]S1))] (10)

This has led to the development of Actor-Critic methods, which incorporate aspects of both
value-based and policy-based RL. For the case of the Q-function Actor-Critic, a Critic is used
to estimate Q(S;, A;) using any of the algorithms described in section , whereas an Actor
uses such an estimate to update 6 by following the policy gradient. Further work has extended
this by using a Critic that estimates an advantage function A(S;, A;) = Q(Si, A;) — V(S;) so
as to reduce the variance of the learning process. Mnih et al [56] suggested the asynchronous
advantage Actor-Critic (A3C), where data collection happens asynchronously, leading to faster
training. The method also introduces N-step returns and adds the policy’s entropy to the
objective function, in order to increase exploration. A2C [56] was introduced as its synchronous
version, overall achieving better performance.

Policy-based methods are inherently optimisation procedures, where the (possibly stochastic)
gradient direction is followed. As with other gradient descent procedures, the learning rate
«a can largely affect learning. Intuitively, the return should monotonically increase as the
optimisation proceeds. Schulman et al [57] proposed TRPO, an algorithm using a trust-region
constrain to ensure that in each policy update the old and new policies did not differ too
much, improving training stability and achieving theoretical guarantees on a monotonic return
increase as training proceeds. Later work introduced PPO [58], an improved version of TRPO,
which introduced a truncated objective function leading to more stable policy updates.

2.1.4 Model-based RL

With the exception of dynamic programming methods, all algorithms presented thus far are
model-free, as they skip an explicit modeling of the environment and instead focus on learn-
ing optimal value functions/policies. However, explicit learning a model of the environment
allows the rest of the decision-making to be taken care of by more mature planning methods
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(recall the two dynamic programming methods introduced earlier). Furthermore, sample effi-
ciency increases, as the (imperfect) model of the environment can be used to generate synthetic
transition data used to improve planning.

Dyna-Q [59] learns a model from real agent experience, and then learns a value function from
both real data and data simulated based on the learnt environment. As the model becomes
more accurate, the data used for learning the value function also gets better, resulting in a more
accurate value estimate while requiring significantly less data than typical model-free methods.
Janner et al [60] introduced a model-based policy optimization algorithm (MBPO) which uses
a learnt reward to create rollouts from previously encountered data. Hafner et al [61] proposed
Dreamer, an algorithm that learns a model from experience, and then uses an Actor-Critic to
learn an optimal policy by interacting with the learnt environment.

A different class of methods focuses on simulation-based search. In such algorithms, the next
action is selected by looking ahead (forward search) and building a search tree according to
a model of the MDP. This MDP is "solved” to find the best new action, and the agent takes
a step in the environment. At the next time-step, the forward search is once again repeated.
In such a setting, planning is much simpler, as there is no need to ”solve” the whole MDP:
the agent only has to solve the sub-MDP starting from its current state. This is similar to
the Diffuser [36] setting, in which we develop our method. In typical simulation-based search
methods, to break the curse of dimensionality associated with very large MDPs, the algorithm
instead simulates/samples episodes of experience from its learnt model, and then uses model-
free methods to evaluate all possible state-action pairs. This setting is often called Monte-Carlo
Tree Search [62], a method that blurs the boundary between model-free and model-based RL,
as while it keeps an explicit model of the environment, it resorts to sampling from it (as in
typical model-free methods) when planning ahead.

2.2 Inverse Reinforcement Learning

The goal of Inverse Reinforcement Learning (IRL) [10, 1] is to infer the reward function of
an agent, given observations of its behaviour. While in a typical RL setting learning amounts
to learning a policy that maximises a reward signal, in IRL the setting is inverted and we aim
to find the reward signal for which the observed policy/behaviour is optimal. Note that this
setting is very similar to imitation learning [7]. However, in the latter, we circumvent learning
a reward function and instead aim to directly learn how to create behaviour that matches some
dataset of observed behaviour. Section [2.2.3] presents further discussion on imitation learning.
Methods such as the one we propose in this report, as well as AIRL [19], blur the boundary
between these two types of methods, and output both a value function and imitated behaviour.

While it might not be clear at first-sight why one would aim to solve this inverse problem,
learning a reward function is actually key to applying RL to real-world settings. The benefits
behind learning a reward function can be informally divided into three categories:

1. Circumvent manual specification of a reward function

e RL has been applied, to great success, to game-like settings |2} [52], where a clear
reward signal is often available or can be crafted. However, the application of RL
methods in the real world is often limited by the lack of a natural reward function.
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Let us think of a self-driving car A aiming to overtake another car B on a highway: an
hypothetical reward function would have to not only take into account the distance
of car A to car B (as well as their velocities/accelerations), but also the number of
cars on the road, their positions with respect to cars A and B, the weather conditions
influencing the traction on the road, as well as the topology of the road. In short,
it is not realistic to create a reward function that encompasses all factors required
for decision-making. While in certain applications roughly specified rewards can
be enough to learn (near-)optimal behaviour, in real-world applications, especially
those where safety is paramount, it is unlikely optimal behaviour can be obtained.

2. Improved Generalization

e Due to RL’s documented low sample efficiency [23], 25], it is paramount to find ways
to transfer knowledge already acquired: be it for an agent whose environment partly
changes, or for knowledge to be transferred between different agents to increase the
knowledge pool of the group. The most straightforward way to do so would be by
transferring an agent’s policy. However, even slight changes in the environment can
dramatically change the optimal behaviour [10], leading to an inoperable policy. On
the other hand, the reward function has been shown to be much more robust to such
changes [10]. Thus, IRL provides a way for not only increased robustness, but also
for knowledge transfer (be it for multi-task or multi-agent settings).

3. Imitation Learning

e As further discussed in section[2.2.3] imitation learning methods aim to learn a policy
that matches an available behaviour dataset. While this is not IRL’s goal, IRL can
be used as an intermediate step in imitation learning frameworks: one can learn
the reward function that explains the observed data, and then use the learnt value
function to generate behaviour that matches the observed data. Such frameworks
can be applied to behaviour prediction tasks.

In a formal setting, the IRL problem can be defined as:

Definition 1 (IRL Problem) Let us define a non-reward MDP M = (S, A, T,~). Let D be
the dataset of trajectories D = [{(so, ao), (s1,a1), ..., (s, ar))', ..., {(s0, a0), (s1,a1), ..., (s7, ar))"]
with N trajectories, s € S,a € A. The IRL problem amounts to determining Rp, the reward
model that best explains dataset D.

There are challenges that make IRL a particularly challenging problem to solve. Firstly, it does
not have a single solution, as there is no single value function that explains the observations.
Ng and Russel [11] showed that many reward functions can explain a dataset of observations.
Furthermore, assessing similarity between value functions is not straightforward. Firstly, a
direct comparison of rewards is not accurate, as an MDP’s optimal policy is invariant to affine
transformations of the reward function [63]. Secondly, reward functions that differ only in only
very few state-action pairs can actually result in largely different optimal policies. Section
presents a more thorough discussion on this issue, introducing metrics for value function
comparison.
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IRL also suffers from many of the same issues that typical RL faces, including high computa-
tional complexity and poor sample complexity. Regarding the former, typical IRL algorithms
rely on a two-step iterative process. Firstly, the MDP is solved for the current reward function,
generating behaviour samples. Secondly, the value function parameters are updated to minimise
some metric between the sampled behaviour and the observed behaviour (dataset). Solving a
MDP is exponential in the number of components of the state vector (curse of dimensionality),
and this issue is further worsened if the state space is continuous, as is the case in applica-
tions such as robotics. Regarding the latter, as the state dimension grows, a larger number
of samples is required to cover the entire state space. RL’s inherent poor sample complexity
translates to the IRL setting, making algorithms particularly data-hungry as state/action space
dimensionality increases.

2.2.1 Canonical Methods

Most of the canonical methods in IRL can be divided in three categories: Maximum Margin
methods [I1}, 64], 65], Maximum Entropy methods [16], 9, 8] and Bayesian methods [66].

Maximum Margin Methods

Maximum margin methods aim to learn a reward function that explains the observed behaviour
better than any other policy by a certain margin. Ng and Russel [I1] suggested maximising
the difference between the expected state-action value of the optimal action from state s and
the expected value of the second-best action:

> Q(s,a") — max Q(s,a) (11)

acA\a*

with a* being the optimal action for state s. With a feature-based linear reward function
Q(s,a) = wld(s,a), this can be formulated into a linear programming problem, where the
obtained policy maximises the margin while also producing the policy represented by the
given trajectory dataset. Ratliff et al [64] proposed maximum margin planning (MMP), which
assumes that each trajectory in the dataset is associated with a distinct MDP and represents
a different policy. These different MDPs are assumed to share the same reward model, and the
linearly parameterised reward function is solved via quadratic programming, using the margin
in (11) and a regularisation term that encourages the behaviour derived from the learnt value
function to match the observed trajectories.

Maximum Entropy Methods

Maximum entropy IRL focuses on solving the IRL problem while obtaining a policy with the
most entropy possible. High entropy policies allow for better exploration, and avoid many
of the failure cases of deterministic policies. One possible formulation aims to find a reward
function for whom the distribution over all trajectories has the maximum entropy, that is

max H(r) =max — 3 P(r)log P(r) (12)
Te(SxA)T

over the simplex A of T-length trajectories 7. Ziebart et al. [16] introduced MaxEntIRL,
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which finds the IRL solution that maximises the entropy while introducing two additional
constraints: matching of feature counts between learnt and demonstration trajectories, and
ensurance that the distribution over trajectories is a probability distribution. This is a convex
non-linear optimisation problem, and it has been shown that its solution lies in the exponential
family [I6]. Thus, one can parameterise P(7) = e2wer® 959 and solve the optimisation
procedure by finding the maximum of:

arg maXZlog P(r;w) (13)
w T7€D

Deep MaxEntIRL [67] generalises this framework to non-linear reward functions using a neural
network. To do so, the network follows the gradient of the likelihood in (13). PI-IRL [68]
extended the same objective to continuous state spaces.

Bayesian Methods

Bayesian inference can also be applied to an IRL problem setting. In such cases, we place a
prior on the reward function R, and define a likelihood function P(7|R). This yields a typical
Bayesian posterior:

P(R|T) < P(T|R)P(R) (14)
where the likelihood is often factorised such that P(7|R) =[], ,)e, P((s,a)[R)

A common choice for the likelihood function is a Boltzmann distribution with the energy
function being the state-action value function, such that

Q(s,a)

P(s,a|R) x e &

(15)

with a parameter k. BIRL [66] uses such a parameterisation choice, and presents different
possible priors over R. Other approaches such as GPIRL [69] model the reward function using
a Gaussian process with a learnt kernel.

2.2.2 GAN-GCL and AIRL

In recent years, inverse RL methods have evolved from hand-crafted features to deep learning
methods. Finn et al [I7] showed that the learning of a cost function by a discriminator in
typical GAN set-ups is akin to the learning of a reward model in maximum entropy IRL, such
that a reward function can be extracted from the discriminator if it is trained to optimality
(please see section for more detail on GANs). Their analysis interprets the IRL problem
as solving the maximum likelihood problem:

max E.p [log py(7)] (16)
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with pg(7) o< p(so) HtT:o eV Ro(s0:00)p(s, 4 |s,, ;). In such work, they introduce GAN-GCL, which
optimises using a GAN [18]. In such a setting, the discriminator takes the form:

h(T)

Dy(1) = (17)

eh™) 4+ 7(7)

where hy(7) is a learnt function. The policy 7, akin to the generative model, is trained to
maximise R(7) = —log(D(7)) + log(1 — D(7)), by a policy optimisation method of choice. As
in other IRL methods, optimisation consists of two alternating optimisation procedures: in a
first step, the reward function is updated (here equivalent to updating the discriminator), and
in a second step the MDP is ”solved” for the current reward function, outputting a new policy
(here equivalent to updating the policy). If this set-up is trained to optimality, the optimal
reward function is R*(7) = h*(7) — const., and 7 is the optimal policy.

Fu et al [19] introduced AIRL, a method based on adversarial learning. AIRL identifies that
the trajectory-level framework that GAN-GCL assumes is prone to high variance and conse-
quently poor learning. Thus, AIRL adapts the discriminator to a single transition setting. The
discriminator and consequent reward function then take the form:

Dig(s,0,8) = (18)
s,a,s) =

0. eh0,¢(s7a,5’) + 7 a|3)

Ros(s,a,8") =log Dy s(s,a,s")) —log(l — Dyy(s,a,s)) (19)

with hg g(sas) = Jo(s,a) +794(5") — gs(s). The term g4(s) mitigates the effects of unwanted
reward shaping, and leads to more robust reward functions. The policy 7(a|s) is updated in
each iteration with respect to the new reward function using a policy optimization algorithm.
AIRL produces rewards that are disentangled from the environment dynamics observed during
training, producing reward functions that are robust to changes in environment dynamics.

2.2.3 Imitation Learning: Behaviour Cloning, Guided Cost Learning and GAIL

As previously explained, imitation learning is a problem class which aims to learn a policy that
matches available agent behavioural data. While some methods directly aim to learn a suitable
policy, others take intermediate steps (such as learning a reward function) to help in learning
a policy. The simplest method, Behaviour Cloning (BC), reduces to using supervised learning
on (s,a) pairs. Most implementations use either the log likelihood of the policy, or the MSE
between actions for learning. While it can learn to mimic behaviour quite well, BC tends to
generalise very poorly, and lacks robustness to changes in environment dynamics.

Finn et al [§] introduced Guided Cost Learning (GCL), using the learning of a reward function
as an intermediate step to learn behaviour from demonstrations. GCL introduced the learning
of a reward function via a neural network. It aims to maximise the log likelihood of the expert
trajectories under the model p(7), assuming p(7) is a Boltzmann distribution with its energy
function being the negative of the reward function. The method introduces a way to estimate
this log-likelihood via sampling (suitable for unknown dynamics), and then uses the algorithm
presented by Levine [70] to perform policy optimization under unknown dynamics.

GAIL [9] (partly) circumvents the learning of a reward model, aiming to directly learn a policy
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from the demonstration data. It does so by having a discriminator D(s,a) that aims to dis-
tinguish between expert and generated trajectories. The policy improvement step uses TRPO
[57] with cost function log(D(s,a)). In doing so, GAIL obtains a policy as if it were obtained
by policy improvement on an IRL learnt value function, without explicitly requiring an in-
termediate IRL step. As for GAN-GCL, GAIL is shown to be akin to learning with a GAN

[9].

2.2.4 Value Function Similarity

One of the roadblocks for a better understanding of IRL methods is the difficulty in assessing
similarity between reward functions. It is particularly hard to assess the failure modes of IRL
algorithms, and to compare the performance of different algorithms. This difficulty is often
bypassed by instead evaluating the policy obtained from following the learnt value function.
However, this mixes the reward learning error with possible policy optimisation errors, and
might not be a good proxy for the quality of the learnt reward. Simple metrics such as the
L2-distance are not satisfactory, as two reward functions which induce the same ordering of
policies can have large L2-distance, or alternatively two reward functions which induce opposite
ordering of policies can have small L2-distance [39].

Gleave et al [39] introduce ERC as a baseline, analyse where it fails, and introduce Equivalent-
Policy Invariant Comparison (EPIC) as the first distance that closely matches the desiderata
for a valid value function distance. The authors also introduce NRC, and we present a small
description of it in Appendix . Episode return correlation (ERC) is defined as the Pearson
distance between the episode returns of two reward functions.

Definition 2 (Pearson distance) The Pearson distance between two reward functions Ra
and Rp is defined to be D,(Ra, Rp) = \/1 — p(Ra,RB)/V?2, with p(R4,Rp) being the Pear-

son coefficient between the two random vamables

Definition 3 (ERC) Let D be a distribution over trajectories (denoted coverage distribution).
Let T be the randomly sampled trajectory from D. Let G(1,R4) be the episodic return of
trajectory T according to reward model R4. The Episode Return Correlation (ERC) distance
between two reward functions R and Rp is defined as the Pearson distance between their
episodic returns on coverage distribution D, that is ERC(Ra,Rp) = D, (G(1,R4),G(T,Rp).

If the return of reward function R 4 is a positive affine transformation of the return of reward
function R p, then they both share the same set of optimal policies. Since the Pearson distance
is invariant to positive affine transformations, it follows as a suitable metric. However, ERC
is shown to be susceptible to reward shaping, and is not robust to the choice of coverage
distribution (the distribution of transitions for which the reward function is evaluated). EPIC
is presented as an alternative to previous sub-par distances. Importantly, EPIC satisfies several
of the desiderata: it is a pseudo-metric, it is invariant to potential shaping and positive rescaling,
it is computationally efficient, it shows robustness to the choice of coverage distribution, and
its value is predictive of similarity between trained policies.

Equivalent-Policy Invariant Comparison (EPIC) [39] is a pseudo-metric defined as the Pearson
distance between two canonically shaped reward functions.
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Definition 4 (Canonically shaped reward function) Let Ds € A(S) be the distribution
over states, and D4 € A(A) the distribution over actions. Let S, A, S’ be independent samples

from their respective distributions. The canonically shaped reward function R is:
Cpspa(R)(s,a,8) =R(s,a,8") +E[yR(s",A4,5) — R(s, A, S") — vR(S, A, S")]. (20)

Definition 5 (EPIC) Let D be the coverage distribution over transitions (s, a,s’), from which
we jointly sample (S, A, S"). Let Ds and D4 be the distributions over states and actions respec-
tively. The EPIC distance between two reward functions is

Dgpic(Ra;Rg) = Dp(Cpsp,(Ra)(S, A, S"), Cpg oy (RB)(S, A, 5")) (21)

EPIC is shown to be bounded, invariant to potential shaping, and it bounds the regret of
optimal policies. The metric outperforms NPEC and ERC empirically, and proves to be a good
predictor of subsequent quality of policies optimized for the learnt reward.

Waulfe et al [T1] present Dynamics-Aware Reward Distance (DARD), which unlike EPIC, takes
into account the dynamicso f the environment. This allows it to achieve better theoretical
guarantees in settings where the transition dynamics are known, but naturally decrases its
robustness to changes in environment dynamics.

STAndardised Reward Comparison (STARC) [72] is currently the state-of-the-art class of met-
rics for value function comparison. Alike DARD, STARC takes into account the transition
dynamics. The following definitions from the STARC paper explain this class of metrics:

Definition 6 (Canonicalisation function) A function f : R — R is a canonicalisation
function if f is linear, f(R) and R only differ by potential shaping and S'-redistribution [75]
for all R, and if for all Ra,Rp € R, f(Ra) = f(Rp) iff Ra and Rp only differ by potential

shaping and S’-redistribution.

Definition 7 (Admissible metric) An admissible metric m : R x R — R is a metric for
which there exists a norm p and two positive constants u,l such that | - p(z,y) < m(x,y) <
w-p(x,y) for all z,y € R.

Definition 8 (STARC metric) A distance between two reward functions is a STARC metric
if there a canonicalisation function f, a function h that is a norm on Im(f) , and a metric
m that is admissible on Im(s) such that Dsrarc(Ra, Rp) = m(s(Ra,Rg)), with s(Ra) =
F(R)/W(f(R)) if h(f(R)) # 0, and s(R) = f(R) otherwise.

STARC metrics all standardise the reward in various ways (in particular eliminating equiv-
alences originating from potential shaping and S’-redistribution, as neither affects the policy
ordering) to collapse certain equivalences between reward functions, with the final calculation
step calculating the distance in a space without redundancy. STARC metrics provide very
strong theoretical guarantees, inducing an upper and lower bound on the worst-case regret.
Furthermore, the authors show that any pseudometric on the reward function space R with
the same theoretical guarantees as STARC metrics must be equivalent to them, thus showing
STARC metrics provide a solid answer to the problem of measuring reward function similarity.



2. Background 16

2.3 Trajectory-Space Metrics

We now introduce two possible metrics to calculate the similarity between two trajectories.
These are considered as possible loss functions for our method.

2.3.1 Maximum Mean Discrepancy (MMD)

Maximum Mean Discrepancy is often used as the test statistic in kernel-based two-sample test
[74], aiming to detect whether two distributions are the same. It has been used as the loss
function when training generative models [75] [76].

MMD considers the distance between distributions as the distance between the mean embed-
dings of features, for a choice of kernel. The feature space is determined by the chosen kernel,
and thus MMD can be computed for different kernels. If the features induce a universal RKHS,
the MMD is asymptotically 0 if and only if P = @ [74]. Good choices of kernel, particularly for
high-dimensional settings, have been previously studied [77]. However, there is yet to be work
on how such theoretical findings can be translated into a practical setting.

We now define MMD. For a kernel-defined feature space ¢ : X — H, where H is a Hilbert
space, we have that the MMD between two distributions P and @) is

MMD?*(P,Q) = ||Exp [¢(X)] — Eyq [¢(Y)] (22)
= <EX~P [9(X)], Exinp [¢(X/)]> + <EY~Q [p(Y)], Eying [¢(Y')]>

— 2<]EX~P [p(X)], By g [0(Y)] > (23)

= Ex xnp{9(X), 6(X) 1 + Eyyrg{d(Y), 6(Y")2 — 2Ex~py~q(p(X), ¢(Y()>"h)c

24

= Ex xrnp[k(X, X')] + Eyyiglk(Y,Y')] = 2Expy~qlk(X,Y)] (25)

When considering finite data settings, equation can be empirically estimated via

MMD*(X,Y) = _1 > (i x;) ZZk X, Y;) ZZk Yi¥j)

(EC i JF
(26)

for dataset of size m for X and size n for Y. MMD has been shown to provide more stable
training than the adversarial GAN loss [75, [76]. However, the sample quality is also shown to
be generally worse. For this reason, Li et al. [76] calculates the MMD on a latent generative
space, and then places the latent state through a decoder to obtain the desired output. Levine
et al. [78] use MMD alongside policy gradients to guide policy search. In particular, this work
considers the MMD between the distributions of state-action pairs.
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2.3.2 GAN-based Discriminator

GANSs [I8] were introduced as a new type of generative models, where a generative model G
is trained alongside a discriminative model D. The models are trained in a minimax two-
player game setting: D learns to estimate the probability that a sample came from the training
data rather than the model’s distribution, whereas the generator GG is trained to maximise the
probability of D making a mistake in its discriminative task.

In the original setting, both D and G are chosen to be multi-layer perceptrons, the generator GG
takes noise and aims to output a valid sample, and the discriminator D outputs the probability
that a sample came from the data distribution rather than the generative model. Taking
the prior on the input noise p,(z), D is trained to maximise the probability of assigning the
correct label to both training examples and samples from G, whereas G is trained to minimize
log(1 — D(G(2))), which intuitively means it fools the discriminator. Thus, D and G take the
role of two players in a minimax game with value function V (G, D), solving the problem

minmax V(G, D) = Egvpya(@) [10g D(@)] + Eavp.z) [log(1 — D(G(2)))] (27)

In practice, this is solved by optimising D and G in alternate fashion. Importantly, optimising
D to completion without updating G results in overfitting, and thus typical training consists
of alternating between k (usually = 2) steps of optimising D for each step of optimising G.

This adversarial approach has been applied to imitation learning , as part of the previously
introduced GAIL [9]. Generative moment matching networks (GMMNs) [76] combine GANs
with Maximum Mean Discrepancy In this setting, the discriminator is replaced by a two-sample
MMD test. Thus, the generator G is trained to minimise the MMD distance. Further work has
extended on this idea by considering adversarially learnt kernels [79]. This idea, entitled MMD-
GAN, also aims to optimise two networks G and D in a minimax fashion, but the objective
is different. Whereas in GANs the discrimator D is a binary classifier trained to distinguish
between two distributions, in MMD-GANS the discriminator D is an adversarially learnt kernel.
This method shows better sample efficiency and similar performance to GANs.

2.4 Diffusion Models

Diffusion models can broadly be classified into Diffusion probabilistic models (DPMs) and
Score-Based generative models. While our method uses the former, initial idealizations of this
project considered the use of the latter, and thus a small review of score-based methods is
shown in Appendix [E.2] Regardless, note we will show throughout this section that these two
classes are often equivalent.

Diffusion probabilistic models (DPMs) were first introduced in 2015 as generative models, using
ideas from non-equilibrium thermodynamics [26]. The general idea accounts to using a Markov
chain to slowly corrupt data x at each diffusion step t until it gets converted into a target
distribution (usually isotropic Gaussian noise). Learning then accounts to learning the reverse
diffusion process, that transforms the target Gaussian noise z(¥) into the original data z(®)
distribution, via variational inference. This model can fit to any data distribution, with its
training still remaining tractable.
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Labelling the data distribution as ¢(x(?)), the forward process joint distribution can be expressed
as

a(") = q(@) [T a(«V|2""Y) (28)

where g(x®|z(t=1)) is typically set as a Gaussian distribution. In a similar manner, the reverse
process can be modelled as

p(a®D) = p(a®) T pla =) (20)

If the variance of the forward process q(z®|z(*~1) is sufficiently small, the true reverse process
q(z®V]2®) will have the same functional form [80]. This means that learning amounts to
learning the means and covariances of the Gaussian reverse process model p(z~1|z®).

While the likelihood of the data under the reverse model p(x(?)) is intractable, the authors
derive a lower bound using cues from annealed importance sampling. In particular, the log
likelihood of the generative model under the original data distribution (from here onwards

denoted by ¢) can be bounded by:

T (t—1)
_ ) (0),7..(0) (07)) pEVEO) | o)
t= /q(x ) log p(z™)dz™ > /Q(I 10%[ tlj[lq (2@ [zD) dx (30)
= —Z/ ) x D, (q(x*D]z®, x| |p(z*V|z1)) dz© dz®
SHXDIXO) 1 (XOIXO) < i,(XT) (31)

This is a combination of entropies and KL divergences which can be analytically computed.
Learning of the reverse process means and covariances is done by maximising this lower bound.

Beyond their generative capabilities, DPMs also allow for easy multiplication of distributions,
which will occur when calculating posteriors. This is because sampling from a new distribution
p(2©) o< p(z©@)r(2®), resulting from disturbing with some function 7(z(?)), amounts to per-
turbing each diffusion step of the DPM trained to approximate 5(z(?)). For the Gaussian case,
and assuming 7(x®) is sufficiently smooth, it is shown [26] that sampling from the disturbed
distribution p(z(®)) corresponds to a reverse diffusion process with:

dlog r(xt=1"

ax(t—l)/ Jj(t_l)/:f“(l’(t),t)

p(aD]20) = N (fu(w, t) + fo(z",1) oz, t)) (32)

where f, and f5 are the learnt means and covariances of the original reverse process. This is
the guided-sampling property of DDPMs that the Diffuser [36] and our method rely on.

More recent work [27] aims to perform learning in diffusion models using ideas from variational
Bayesian methods, introducing a new diffusion model parameterization which yields Denoising
Diffusion Probabilistic Models (DDPMs). In this work, the authors start from a different bound
on the log likelihood:
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E, | Dz (a(e"le)Ip(2™) + 3 Dicr (ala" M2, ) pg (2~ ]2®)) —log py(2” V)

v~ t>1 ~\~ v
LT = Lt—l LO

(33)

also formed by a combination of entropies and KL divergences which can be analytically com-
puted for the Gaussian case. The key lies in a different parameterization of the L; ; term.

Firstly, by setting the forward process variances to constants, we note that ¢ has no learnable
parameters, and thus Ly can be disregarded during training. Secondly, Lo is disregarded
initially, and instead learnt using a separate decoder. Approximating the reverse process with
a diagonal Gaussian such that ps(z"~D[z") = N (ue(z", t),021), it follows that:

1 .
Lis = By a9 = a0 + € (54
t

However, using the parameterization 2 (2, ¢) = /az2® + /T —a; for € ~ N(0,1), the
objective L;_ 1 can be expressed as:

B — (0 = 2
buos =B | gz e = 0 e VT )| )

which is similar to denoising score matching over multiple noise scales [81]. Thus, instead of
creating a model that predicts ji;, the forward process posterior mean, one can instead create
a model that predicts e from z® and ¢t. Training amounts to predicting the amount of noise
that has been added to the current input . It is thus intuitive that most DDPMs are chosen
to have denoising architectures, such as U-Nets [82], which learn to find the noise in an input.
Sampling from a trained diffusion model then amounts to computing:

1 13
(t 1) p— (t) t
T T €Eg\ T ,t + 012

\/at ( \/1 O[t 6( ! )) ¢

with z ~ N(0, ). This expression is similar to the typical Langevin Dynamics update:
J
Tep1 = Ty + va log p(x:) + Ve,
with ¢ ~ N (0, ). Thus, €(x,t) plays the same role as the score function V, log p(z;).

Despite the theoretical background of the objective , it was found that a simpler objective:

Lsimpte = E,0 ¢ [[]e — €0 (VA + VI —ae,t) || (36)
without the weighting resulted in better empirical sample quality.

Algorithms [1] and [2[ show pseudo-code for the training and post-training sampling of diffusion
models. Line 8 of Algorithm [2| can be adapted according to for guided sampling.
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Algorithm 1: DDPM - Training Algorithm 2: DDPM - Sampling
T ~Y
Input: Dataset ¢(x"), N Training : ?f(or ; f(j(,)’l) | do
Epoch ey
PO s | if t>1then
1 for epoch i +— 0 to N do . ‘ 2 ~ N(0,1)
2 x? ~ q(x°) 5 else
3 t ~U(0,1) 6 ‘ 7z =0
4 e ~N(0,I) 7 end
5 Take opt. step in direction: 1 1 ( r 1-a ‘
~ _ 8 X' == (x ——ﬁedx,t))—i—atz
6 V9||€—€9(\/a_tX0+\/1—Oét,t)||g end ver ta
9

7 end Result: x°

2.5 Diffusion Models in RL

Diffusion models, in particular DDPMs, have emerged in recent years as a valuable class of
generative models. Applications of diffusion models span fields as distinct as natural language
processing [29] 30], drug discovery [31],32], and computer vision [27, 33}, [34]. Naturally, diffusion
models have also been applied to the sequential decision-making tasks, and in particular to
offline decision making. As it turns out, there are multiple challenges in RL that can be partly
addressed by diffusion models.

Firstly, offline RL [83], [84] has been used to counteract the sample efficiency of its online
counterpart. However, off-policy learning in an offline setting is known to suffer from poor
extrapolation [83]. Existing approaches have opted to employ conservative value estimates
for OOD samples [84], or to regularise the policy to be close to the policy used to generate
the dataset [85]. However, such approaches tend to restrict the expressiveness of the policies
obtained [86]. Diffusion models, which are capable of representing any normalisable distribution
[87], hold the potential to improve the expressiveness of such policies.

Secondly, experience replay [2] has been extensively used to counteract RL’s poor sample effi-
ciency. This has often been combined with data augmentation, so as to improve the amount of
data fed into the model. Rudimentary augmentation techniques such as random cropping have
previously been applied to vision-based RL [88], whereas generative models such as VAEs and
GANs have been used to create synthetic RL data [89]. With their improved sample quality
[27], diffusion models have the potential to generate richer datasets, providing a more accurate
representation of the true data source.

2.5.1 Diffuser

The first instance of the use of diffusion models for RL is the Diffuser [36], a trajectory-
level DDPM. The Diffuser can be trained in an offline manner using a dataset of reward-
agnostic trajectories. The Diffuser learns to predict all timesteps of a plan instead of the
typical autoregressive planning found in most RL approaches. Its training mirrors Algorithm
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[, minimising the simplified objective

LSimple = ET(O),e,i [| |E — €9 (Ti7 Z) ||g] (37)

where 7 is the diffusion step and 7¢ is the noise-corrupted trajectory obtained from adding
noise € to 7%, Importantly, the trajectories are now not only representative of the environment
dynamics, but also of the policy used to generate the dataset, since:

apg ap...ar

_ [50 . ..ST} 8)

The Diffuser’s biggest strength lies in the strong coupling between prediction and planning, and
how the former can be executed via diffusion model guided sampling. Recalling Section [2.4]
and specifically equation , it is straightforward to perform guided sampling on a previously
trained diffusion model according to some likelihood (7).

To adapt this idea to a RL setting, we refer to the control-as-inference graphical model [90].
Let O; be a binary RV denoting whether timestep ¢ of a trajectory is optimal, and let us set
the function r(7) to be the likelihood p(Oy.r|7). Subbing this into equation (32), we obtain
the gradient guiding term

dlogr(r—) _ Alog p(Org |1 (39)
ort=1’ =D =, (7(t) t) or (= Tt =f (1)
T .
O (s ) (40)
n ort-1
=D =, (r(0),t)
= VT (fu(rO, 1)) (41)

where j(sy, a;) is the reward for a (state,action) tuple. Taking into account we simplify the
notation in the last step to emphasise that this is simply the gradient, with respect to the
trajectory, of a reward model J. Thus, one simply requires the gradient of the reward model J to
guide the sampling process to achieve optimal trajectories. The pseudo-code for guided planning
using the Diffuser is shown in Algorithm [3] Note we change notation from the cumbersome
fu(t® 1) and fs (70, t) to the simpler up(7®,¢) and .

Algorithm 3: Diffuser - Guided Planning

Input: Trained Diffuser uy, Reward Model J, N diffusion steps, Initial state s,
Learning rate «;
1 Initialize 7V ~ N(0, )
2 for i =N to 1 do

3 | p pe(Thi) ; /* Diffuser Parameters */
4 | T N(p+aXV,eJ(u),X) ; /* Sampling guided by gradient of return */
5 o s /* Condition each diffusion step on initial state */
6 end

As previously mentioned, the Diffuser plans entire trajectories, instead of the typical single-step
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autoregressive predictions of RL algorithms. Due to this difference, the Diffuser does not suffer
from the compouding rollout errors commonly found in typical RL models [91], and thus allows
for larger horizons without sacrificing rollout quality.

On a different note, the connection between sampling from the Diffuser and planning with it
(these simply differ due to the addition of a reward model gradient which acts as a guide for
the latter) means that the Diffuser is particularly well suited to a multi-task setting. In such
tasks, the Diffuser model can learn an environment model from some particular task, and then
at test time the model can plan for novel tasks using the same base diffusion model, simply by
specifying different reward models for each task.

2.5.2 Other Approaches

Subsequent works have extended on the Diffuser framework. LatentDiffuser [92] learns to
encode trajectories into a latent space, and then performs diffusion-based planning on this latent
space, adding a separate decoder to recover trajectories. The use of a more compact planning
space resulted in better performance in high-dimensional tasks. SafeDiffuser [93] incorporates
invariance into the diffusion process, to ensure safe planning for safety-critical applications.
AdaptDiffuser [04] utilises the Diffuser’s generated samples to augment its training dataset,
creating richer datasets which allow for better generalization across a variety of both seen and
unseen tasks. The Decision Diffuser [37] frames the problem as one of conditional generative
modelling, modeling the policy as a return-conditional diffusion model.

In the case of the Diffuser, the diffusion model takes the role of the planner, outputting tra-
jectories that are both realistic under the learnt model, but also likely under the likelihood
function r(7). This approach is akin to model-based RL, as the environment dynamics are
learnt during the diffusion model training. However, diffusion models have also been exten-
sively used in model-free approaches, with the diffusion model being used as the policy model.
The high expressiveness of diffusion models means this method circumvents the issues with low
expressiveness of RL policies previously mentioned.

Diffusion-QL [86] employs a diffusion model that simply takes the current state s; as input,
and learns to output an optimal action a;. The training is guided via a jointly-learnt Q-value
function, guiding the policy samples towards the optimal policy. That is, the diffusion model
learns a noise predictor €y(a’, i, s;) for the state s; at time 7. The guiding via Q values amounts
to including a weighted Q maximization term in the diffusion training loss.

This approach does not allow for guided sampling with new objectives post-training, as the
Diffuser does. Thus, recent work [95] instead constructs the guided diffusion policy as

Ta(als) o pio(als) exp(Q(s, a)), (42)

where p(als) represents the mean output of the diffusion model. This formula allows for the
training of a base diffusion model, followed by guided sampling with Q function guides. This
idea has since been extended to allow for sampling from more general, potentially unnormalised,
energy-guided distributions [96].
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2.6 Inverse RL with Diffusion Models

To the best of our knowledge, there is only one work to date on learning a reward function
using diffusion models. Nutti et al [38] introduce a method to learn a relative reward function
from two Diffusers. This method works for any two diffusion models, regardless of whether
they are unguided, or guided with either classifier-guided or classifier-free guidance. Nutti et
al. introduce the notion of a relative reward function between two diffusion models:

Definition 9 (e-Relative Reward Function) Let sy(-,t) and s;(-,t) be the score functions
of two diffusion models, and t € (0,T) the diffusion step index. Let h; denote the optimal
relative reward gradient [38] of sy(-,t) and sfb(-,t) at time t. Then, for e > 0, the e-relative
reward function p : R™ x [0,T)] is such that:

/ I Vaplwt) @B < e Vie 0.1 (43)

To approximate Definition [} a neural network parameterised approximation py is learnt ac-
cording to the training objective:

L) = Boesiorymimpe [[[Vapu (@1, 1) = (850 1) = s9(: 1))][3] (44)

where p; is the marginal at diffusion step ¢ of the forward noising diffusion process. A common
use setting consists of having two diffusion models, a non-expert one and an expert one, and
using this algorithm to align/steer the non-expert diffusion model towards the expert model.

This method succeeds in extracting relative reward functions on the Maze2D [40] environments.
Furthermore, it is shown to be able to align behaviour between diffusion models trained on data
of different quality, as the authors show that the learnt relative reward is able to (partly) steer
the behavioural performance of a non-expert diffusion model towards an expert model.

Our method, presented in the next section, differs from this work as it aims to extract a reward
function from a single diffusion model, instead of two. In doing so, we aim to obtain an actual
reward function, as opposed to a relative reward [38]. This makes our method more sample
efficient, as we only use expert trajectories to learn the reward model, instead of training an
entire diffusion model on them. Finally, we do not assume diffusion step ¢ to be an input to the
reward model. Thus our guide is not diffusion step-specific, as opposed to Nutti et al.’s [38].
The effects of this choice will be discussed in the experimental sections of this report.

3 Methodology

In Section [2| we started by introducing the RL (Section and IRL (Section problems.
We introduced metrics with which we can compute the similarity between two reward functions
(Section , which will be used to evaluate our method’s performance. We also introduced
a class of metrics to compute similarity between agent trajectories (Section [2.3), which will be
used as loss functions in our algorithm. We concluded by introducing diffusion models (Section
2.4), and presenting a survey of their applications in RL (Section and IRL (Section [2.6)).
We are now in a position to introduce our proposed method.
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3.1 Formal Problem Specification

We start by formally specifying the problem of IRL in a trajectory-level diffusion model.

Let us consider a base diffusion model €4(7*, t) which has been trained on non-expert trajectories
from dataset Dy. Let py(7°) be the base Diffuser’s generative distribution, learnt according to
the empirical distribution g,(7)of dataset D,. Assume we have an expert trajectory dataset
D, for trajectories in the same state-action space as those in D,. Let ¢.(7) be the empirical
(expert) trajectory distribution according to D.. The IRL problem amounts to finding the
reward function R(7") such that:

1

(1) = pu(7) = (") R(r) (45)
pe(r) = Sl R (16)

T 1 T T
pe(r") = S )R(T) (47)

where ¢ is the diffusion step index, and Z! is the normalization constant for each intermediate
distribution. That is, given the base Diffuser, the IRL problem consists of finding the reward
function R(7') that can guide the guided-diffusion output distribution towards the empirical
expert trajectory distribution g.(7).

3.2 Learning Rewards for Classifier-Guided Diffusion

We now introduce our method to learn a reward function using a base diffusion model trained
to learn environment’s dynamics, samples of some expert behaviour, and a metric in trajectory
space.

Ho et al. [27] shows that for a learnt diffusion model €y(7,t), one can obtain samples via the
backward diffusion (denoising) process:

t

T = é Th— —1—1 _aat e(T',t)| +0'z (48)
where ¢ denotes the diffusion step. af,a' and o' are diffusion parameters which can either be
fixed or learnt. They are not relevant to our derivation. As presented in Section we aim to
obtain a diffusion model described by a posterior distribution p.(7'). Sohl et al. [26] showed
that, given a likelihood py(y|7"), we can guide a (prior) diffusion model’s distribution towards
the respective posterior distribution by performing each step of the reverse diffusion process
according to:

T = — (7T — —GG(Ttat) + SEV.,-t 1ng¢<y’7-t) + Utz (49)

where s is a learning rate-like parameter. This is an equivalent formulation of the previously
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encountered equation . Thus, the system of equations , and can all be solved
by independently shifting each diffusion step.

The original derivation was for a non RL related likelihood py(y|7"). However, this likelihood
can be adapted to a RL setting. Referring to the control-as-inference graphical model [90], one
can express the likelihood of a state-action pair being optimal as

p(Or = 1) = exp(r(s:, ar)) (50)

Under this assumption, [36] shows that: N
V., logpg(Orn|T) = V- Zr(st, a) (51)
= VT};:(Z') (52)

where R(7) is the return of the entire trajectory 7. Thus, the guided reverse process for an
output trajectory 7 can be obtained by T reverse diffusion steps, each according to:

t—1 L 1—aof t t t
= = |t S (rh 1) | + sEVR(T) + o'z (53)

at V1—at

Our algorithm proposes parameterising the return R(7) with a neural network R, (7). We first
train the base diffusion model €y(7¢, ) on a dataset of reward-agnostic trajectories to learn the
dynamics of the environment, and initiate the trajectory return model R, (7). Then, our algo-
rithm consists of repeatedly performing guided sampling (with fixed first state according to an
expert trajectory) with the current reward function, calculating a loss between the sample ob-
tained and an expert trajectory, and backpropagating this error so as to update the parameters
of the reward network. A diagram explaining this process is shown in Figure [2|

Our algorithm thus learns the guide necessary to guide the base diffuser distribution towards
the expert trajectory distribution. The pseudo-code for our method is shown in Algorithm [4]
Appendix[A] contains a more detailed derivation of classifier guidance in the Diffuser framework,
as well as a derivation of the gradient of the MSE loss with respect to the guide’s parameters.

Algorithm 4: IRL with Diffuser
Input: Base (Trained) Diffuser €4(7*,t) with N diffusion steps, Expert Trajectories
Dataset D,, Number of Steps K, Distance metric M, Initialised Reward
model/guide Ry

1 for epoch i < 0 to N do

2 for 7. in D, do

3 ™ ~ N(0,1) ; /* Sample diffusion start */
4 TéV — T /* Fix first state according to target 7. */
5 70 €(Te) ; /* Reverse guided diffusion, fix first state */
6 70« 7 K] ; /* Get first K steps of each plan in batch */
7 L=M(7°7°; /* Calculate Loss according to metric */
8 opt.step() ; /* Backprop grads and do opt step on ¢ */
9 end

10 end

Result: Reward Model Ry
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Expert Trajectory Dataset Guided Diffusion

Fix initial state

Current Learnt Value Guide

EHEEE

Update Value
Guide

— Distance metric M

Figure 2: Diagram explaining the workings of a one sample version of our method. A trajec-
tory is sampled from the expert trajectory dataset. This trajectory fixes the first state of the
diffusion process. The reverse diffusion process samples a trajectory with fixed current state.
A trajectory-distance metric is calculated between the sampled trajectory and the expert tra-
jectory, with the value network’s parameters being updated accordingly.

3.3 Practical Considerations

Distinction between plans and rollouts. A plan is simply the output trajectory of the
diffusion model, and it reflects the model’s long term planning capabilities (and thus indirectly
its knowledge of the environment dynamics, as the agent never actually interacts with the
environment when planning). A rollout is defined as the trajectory obtained from iteratively
planning from the current state, taking the first action according to this plan in the environ-
ment, moving to a new state according to the true environment dynamics, and planning again
from this state (and so on, until a certain rollout length is reached). Plans are significantly
noisier than rollouts, and as previously mentioned incorporate errors from the Diffuser’s learnt
environment model. Thus, expert trajectories for IRL are ideally rollouts, so they reflect the
true environment dynamics. As the output of the diffusion model is a plan, it was deemed
fairer to the algorithm to compare only the initial portions of its plan to the expert rollout
(this is because plans are notoriously noisier and of poorer quality after the first 10 to 20 steps
when compared to rollouts). The number of steps K considered is chosen depending on the
environment.

Due to the distinction highlighted above, our method assumes a pre-processing step that creates
a dataset of K-length sections of expert trajectories. This can be obtained by splitting longer
trajectories into K-length sections using a sliding window approach on longer trajectories.
Algorithm [5] describes this approach. Furthermore, when planning in Algorithm [d] we truncate
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the Diffuser’s sampled plan so as to only consider its first K steps.

Algorithm 5: Pre-processing trajectories into K-step trajectories

Input: Dataset of full length expert trajectories Dy, Number of Steps K
D, <+ 0 ; /* Initialise dataset */
for each expert trajectory 7/ in D; do
step < 0
while step < len(77) do
‘ D, .append (77 [step:step+K]) ; /* Get dataset of K-step sections */
end
step < step+K
end
Result: Expert trajectory dataset D,

® 9 o oA W N =

Trajectory-space metrics The loss function M is chosen to be a metric in trajectory space,
thus representing the difference between two trajectories. As the diffusion process approximates
each step of the denoising process as a Gaussian, the mean squared error (MSE) is a natural
(albeit naive) choice for the metric M. While we do not present such an analysis in this report,
future work should study whether by choosing a MSE loss we are indeed matching the means
of the Gaussians in each of the denoising steps.

If the loss function is defined as the mean squared error between a sampled plan 7° and an
expert trajectory T, such that

L=|r.—7%)ll3 (54)

then we have that the gradient of this loss with respect to the reward model’s parameters ¢ is:

2
_ L, 1—a! 1 1
V¢L = V¢> Te \/a_lT + mEQ(T s 1) -+ SEV.,-le)(T ) 2 (55)
B 1 ort 1—a'  Oe(7,1) d 0 .
_QHH |}T6_ \/J&b +\/Jm 8q5 +Sza—¢ﬁR¢<T ):| (56)
_ 1 or! 1—a'  Oe(7!,1) J 0 N
—2||-||{Te—\/$a¢ +@m 9 +828_¢ﬁR(T )} (57)

Note that this involves a second derivative of the reward model. Furthermore, the recursive
nature of the first and second terms indicates how the gradient calculation flows through each
diffusion step. Possible parallel work should study whether this is desirable, or whether stopping
gradient flow after the first noising step could provide better training stability. Regarding the
choice of loss, MSE is a rather naive choice for a distance metric between trajectories, scaling
poorly with dimension, and not taking into account the generative nature of a diffusion model.
Furthermore, especially in complex environments, the mean between two trajectories might
not even be feasible, or desirable. In Section we introduce two main classes of possibly
more appropriate metrics for trajectory similarity: Maximum Mean Discrepancy (MMD), and
discriminators such as those used in GAN setups. We leave a GAN-like discriminator as possible
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future work, as this direction was not prioritised due to the instabilities in training described
in Section . Since GAN training is known to be unstable [97, O8], we hypothesise that it is
likely any instabilities in our reward model training would be exacerbated by the incorporation
of an adversarial set-up.

Thus, to consider more complex trajectory distance metrics, we also implement a variation of
our method based on a loss function defined as the MMD between the empirical distribution
of expert trajectories and the empirical distribution of sampled plans. As discussed in Section
, the empirical MMD between two datasets X and Y (with sizes ¢ and j respectively) can
be computed, for a choice of kernel k(x1,z5), as:

MMD*(X,Y) = ;_ DY k(xix)) — 12 DY k(xiy)) + ;_ > klyiy;)
m(m — 1) me — &~ m(m — 1)

i g i g
(58)

We consider two choices of kernel, Gaussian and Matern, and study the impact of the choice
of trajectory-space metric on the performance of our method. The choice of these two different
kernels allows for different assumptions on the smoothness of the trajectories. More specifically,
a Gaussian kernel assumes infinite differentiability, whereas the Matern kernel, as it is chosen
with a smoothness parameter of 0.5, is identical to an absolute exponential kernel, and thus
does not assume the trajectories can be differentiated even once.

Note that despite Algorithm [ calculating the loss sample-wise, we implemented this algorithm
in a way such that it takes data in a batch. While optional for the MSE, this is necessary for
the MMD cases, so we create batches of expert trajectories, and batches of sampled plans (one
for each starting point of its respective expert trajectory), and calculate the MMD between
the two empirical distributions. We would not be able to simply calculate the MMD if each
distribution had only 1 sample.

Evaluation metrics. While being classed as a IRL method, our method aims to solve not only
the IRL problem (learn a reward function), but also the imitation learning problem (imitate
behaviour according to the expert trajectories). Thus, we assess our method’s performance on
two different axes: behaviour quality and reward function quality. This allows us to (partly)
separate errors in learning a value function from errors in learning an optimal policy in the
environment. The quality of behaviour is assessed by the return obtained by a trajectory in the
environment (this is either available in the environment, or is given by a ”true” reward function
that we hand craft, depending on the experiment). The quality of the learnt value functions is
given by the Episode Return Correlation (ERC) distance, introduced in Section between
the return given by the environment (or by the handcrafted ”true” reward function) and the
return according to the learnt value function. Note that despite the name, the ERC is defined
as a Pearson distance (instead of a Pearson coefficient), and thus a smaller ERC (which can take
values in the interval [0, 1]) is associated with more similar value functions. While there are
stronger value similarity metrics (as discussed in Section , we did not find viable already
existing implementations.

Baselines. We compare our method to three baselines: Behaviour Cloning (BC), GAIL and
AIRL (introduced in Sections and [2.2.3), all using off-the-shelf implementations [} and
trained on the same expert trajectories. BC and GAIL are imitation learning methods, and

3https://imitation.readthedocs.io/en/latest/
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thus we compare the quality of behaviour generated by our method to the behaviour generated
by these baselines. As previously described, we assess the quality of behaviour based on the
return obtained by a trajectory in the environment. On the other hand, AIRL is closer to our
method, in that it learns a reward function and uses it to create imitative behaviour. Thus,
for AIRL we compare both the quality of the learnt value function as well as the quality of
behaviour. As previously mentioned, the quality of behaviour is assessed via ERC.

3.4 U-Maze environment

We begin by evaluating our method on the U-Maze (seen in Figure . More details about this
environment can be found in Appendix[B] This is a simple environment with low dimensionality,
used to provide a proof of concept for our method.

Beginning

El

End

Figure 3: Trajectory of an agent in the U-Maze environment. Maze in white, walls in grey.

3.4.1 Experimental setup

Base Diffuser Training. The base Diffuser was trained on 1566 reward-agnostic trajectories,
each of length 300. Example datapoints are shown in Appendix [D.I The planning horizon was
chosen as 128, and the number of diffusion steps as 64. Training details are shown in Appendix

(]

True Reward. We designed a reward model according to the formula Jy = 5z + 5y, where x
and y are the coordinates in the maze (horizontal and vertical respectively, starting from the
top left corner, with = € [0,5] and y € [0, 5] including the maze walls). Thus, our reward model
gives the highest reward to the bottom right corner of the maze. Figure ] shows this reward

function.
40
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Figure 4: Left: True value function used to generate expert trajectories.

anjeA 3115



3. Methodology 30

Expert trajectories. The expert trajectories used for reward model learning were obtained
by guided sampling on the trained base Diffuser using the true reward function in Figure
as the guide. Nine (9) expert trajectories of length 300 were generated by rollouts on the
environment, starting from 3 different start points (3 trajectories per start point). Naturally,
the generated trajectories move towards the bottom right corner, and do not leave it. Figure
shows one of the expert trajectories per starting point.

Beginning Beginning Beginning
End End End

Figure 5: Example expert trajectories used for learning in the U-Maze. Each figure corre-
sponds to a different starting point.

Experimental details. We choose a number of steps K = 10, which is deemed to be small
enough that plans and rollouts have comparable amounts of noise, but large enough that varia-
tions in trajectories result in significantly different outcomes. We consider the distance metric
M between a 10-step section of an expert trajectory and the first 10 steps of a sampled plan
with start state the same as the expert trajectory’s section. For the MSE, each individual
sample in a batch gets compared to its respective sample in the expert trajectory batch. For
the MMD losses, the MMD between the two batches is calculated. The 9 expert trajectories
thus get split into 270 10-step sections. We parameterise the reward model as a 4-layer Multi-
Layer Perceptron (MLP). Details of the architectural characteristics of the network, as well as
hyperparameter values, are given in Appendix [C} This reward model is trained for 100 epochs.
The loss function curves are shown in Figure [6]
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Figure 6: Loss functions for the three different variations of our method as a function of
training epoch for the U-Maze training. From left to right: MSE, MMD with Gaussian kernel,
MMD with Matern kernel.

Evaluation. We evaluate the quality of the rollouts obtained by guided planning of the base
Diffuser with the learnt value function, from 5 different starting points. We measure the quality
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of each rollout based on its return under the true reward model. To evaluate the similarity
between value functions, we randomly sample trajectories from the dataset used to train the
base Diffuser (assumed to accurately cover the state space), and calculate the ERC distance (see
Section between the return of these trajectories according to the learnt reward model,
and the return according to the true reward model. In Table (I, ”Base Diffuser” represents the
trained base Diffuser without any guide and ”Diffuser (True Reward)” represents the trained
base Diffuser with the true reward function as a guide.

3.4.2 Results and discussion

Table[I]shows the return and ERC for each method, averaged over 100 rollouts. Note the ERC is
naturally only calculated for the methods which learn an explicit value function. Figure|7]shows
example output trajectories for the three variations of our method and the three baselines, from
5 different starting points.

Table 1: Reward of guided rollouts and ERC of base dataset (averaged over 100 rollouts) for
U-maze training.

Method Return 1 ERC |
Base Diffuser 2709.87 £199.81 ——
Diffuser (True Reward) 3569.82 +£243.84 ———
Diffuser (Learnt MSE Reward) 3578.47 £237.46  0.689

Diffuser (Learnt MMD-Gauss Reward)  3563.60 £262.15  0.652
Diffuser (Learnt MMD-Matern Reward) 3557.16 £247.75  0.457

Behaviour Cloning 3535.96 £248.75 ——
GAIL 3782.45 +272.66
AIRL 3724.23 £328.94  0.719

Firstly, we observe that as expected the true reward properly guides the base Diffuser towards
high-reward behaviour. Importantly, we observe that both GAIL and AIRL outperform the base
Diffuser guided by the true reward. While counter-intuitive, this can be attributed to the base
Diffuser training: despite using the true guide, the output distribution of the diffusion model
is still dependent on the dynamics learnt during the base Diffuser training. Moving directly
to the bottom right corner and sticking to that corner (as seen in the expert trajectories in
Figure |5)) is not behaviour present in the dataset that the base Diffuser was trained in, and
thus is out-of-distribution behaviour. The Diffuser with the true guide sticks to the bottom
right corner as it learns strong enough of a guide to do so, but it achieves this "goal” while
moving as much as possible in a way that is consistent with the base reward-agnostic dataset
(for example, always being significantly away from walls). GAIL and AIRL, on the other hand,
are not constrained by these learnt environment dynamics.

All three variations of our method achieve similar returns to the Diffuser with the true reward
as a guide. Thus we can conclude our method learns how to imitate behaviour. However, the
quality of output behaviour of our method depends both on its learnt environment dynamics
and on its learnt guide. The return does not directly tell us that the learnt value function is
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Figure 7: Example output trajectories after learning by different algorithms. Each row is a
different starting point. Each column is a different method, from left to right: MSE, MMD
with Gaussian kernel, MMD with Matern Kernel, BC, GAIL and AIRL.

similar to the true value function. It simply tells us our method learns a value function that
results in similar behaviour as a base Diffuser guided by the true guide. We observe insignificant
differences (well within one standard deviation) between the return achieved by the different
distance metrics considered.

The main advantage of our method is reflected on the significantly lower values of ERC, es-
pecially for the MMD with Matern kernel, which mean our method learns a value function
that is more similar to the true reward function. This presents an interesting scenario: despite
learning a significantly better value function, all three variations of our method achieve lower
return than AIRL. This can be attributed to the previously discussed influence of the base
Diffuser training distribution. The Diffuser with a learnt guide does output trajectories that
stick to the bottom right corner, but these are generated in a way that is (somewhat) consistent
with the base reward-agnostic dataset. AIRL, on the other hand, is not constrained by these
learnt environment dynamics, and can optimise its behaviour to single handedly optimise its
learnt reward function. However, recall from Section that ERC is susceptible to reward
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shaping, and not robust to the choice of coverage distribution (the distribution from which
the transitions are sampled to evaluate ERC). Thus, stronger conclusions regarding the qual-
ity of the learnt value function should only be taken based on STARC metrics (see Section
. Evaluation of such metrics is taken as future work, due to the lack of any open-source
implementations.

4 Experiments on Complex Environments

We have observed that our method learns near-optimal behaviour in the U-Maze environment,
and that the learnt value function has a smaller ERC than state-of-the-art methods (AIRL).
However, the U-Maze is a simple and low dimensional environment. In this section, we im-
plement our method for two more complicated environments. Firstly, the Large Maze (seen
in Figure |§)) is a more challenging maze where long-term planning is much trickier, and where
maximising long-term return often involves sacrificing immediate reward. Furthermore, the
state space is much harder to cover, making it harder to recover a reward function that is
accurate across the entire trajectory space. Secondly, we consider HalfCheetah (seen in Figure
E[), a Mujoco Locomotion environment with a high dimensional state and action space, where
moving forward (the goal) requires the agent to learn the subtle interactions between the dif-
ferent positions, velocities and accelarations of different parts of its body. More details about
these environments can be found in Appendix [B]

Beginning

65

End

Figure 8: Example trajectory of an agent in the Large Maze environment. The walls of the
maze are shown in grey and the area in which the ball can move in white.

Figure 9: Example frames from a trajectory in the HalfCheetah environment.
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4.1 Large Maze

The Large Maze, due to its added complexity, is an appropriate testbed to assess our method’s
performance on long term planning tasks. We first present an issue with generating expert
trajectories in this environment, and how we partially attempt to fix it. We then assess the
performance of our learnt-guide Diffuser method on this environment. Finally, we study the base
Diffuser’s performance in this environment, and show it has considerable flaws, thus rendering
our choice of expert trajectories as sub-optimal.

Generating rollouts is non-trivial. In the U-Maze, the expert trajectories used were rollouts
obtained from the Diffuser guided with the true reward function, and they all reached the part
of the maze with the largest reward (bottom right corner). However, generating such rollouts
in the large maze is particularly challenging due to the dataset that the base Diffuser was
trained on. As a matter of fact, rollouts resulting from planning (either via impainting or
guided planning) consistently get stuck if required to reach the bottom right corner. Figure
shows the rollouts obtained from the base Diffuser with the true reward function as guide. As
observed, none reach the bottom right most part of the maze, and many of them get fully stuck
in their sub-section of the maze. This shows that the Diffuser with the true value function
does not necessarily induce optimal behaviour in the environment. As ultimately we evaluate
agent behaviour using the reward obtained from rollouts, and not plans, we can conclude that
it is entirely possible our method could theoretically learn the true reward function, and yet
its rollouts would not be optimal. This issue will be discussed further after our method’s
performance is presented.

Beginning Beginning

Beginning Beginning
End End End End

Beginning Beginning Beginning Beginning

End End End End

Figure 10: Example rollouts of the base Diffuser using the true reward as guide in the Large
Maze environment.

Generating sub-optimal expert trajectories. Due to the inability to generate expert
behaviour with rollouts, the expert trajectories used for reward model learning were obtained
by planning via impainting on the trained base Diffuser, so as to force all plans to reach the
bottom right corner. Importantly, note that unlike for the U-Maze case, these are plans output
by the Diffuser, and not actual rollouts in the environment. Eight expert trajectories of length
380 were generated by planning on the environment, starting from 8 different start points (1
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trajectory per start point). Figure |5/ shows the 8 expert trajectories. Two of these trajectories
(bottom right) are not examples of perfect behaviour as the agent does not reach the goal as
fast as possible, but the delay was deemed to be small enough that this could be mostly ignored.
As they are simply plans, our expert trajectories reflect the environment dynamics as learnt
by the Diffuser, and not necessarily the true environment dynamics (which only impact actual
rollouts). There is thus a potential environment dynamics gap built into our expert trajectories.

Beginning Beginning Beginning Beginning

k] k] ]

End End
Beginning Beginning Beginning Beginning

] ] [ ]

End

Figure 11: Plans used as expert trajectories for reward learning in the Large Maze environ-
ment. Each starts in one of 8 starting points, so as to ensure appropriate state space coverage.

We will further analyse the issue with using plans (instead of rollouts) as expert trajectories in
Section For now, we present our method’s performance when the expert trajectories are
the plans in Figure

4.1.1 Base experiment

Base Diffuser Training. The base Diffuser was trained on 1062 reward-agnostic trajectories,
each of length 384. Example datapoints are shown in Appendix [D.2] The planning horizon
was chosen as 384, and the number of diffusion steps as 256, as in the original Diffuser [36].
Training details are shown in Appendix [C] Example samples of trained base Diffuser are shown

in Appendix

True Reward. As was the case for the U-Maze, we designed a reward model according to the
formula Js = 52 + by, where x and y are the coordinates in the maze (horizontal and vertical
respectively, starting from the top left corner, with = € [0,12] and y € [0, 9] including the maze
walls). Thus, our reward model gives the highest reward to the bottom right corner of the
maze, as seen in Figure [12]

Experimental details. We choose a number of steps K = 10 as for the U-Maze. We consider
the distance metric M between a 10-step section of an expert trajectory and the first 10 steps of
a sampled plan with start state the same as the expert trajectory’s section. For the MSE, each
individual sample in a batch gets compared to its respective sample in the expert trajectory
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Figure 12: True reward function for the Large Maze experiment. The walls of the maze are
shown in grey, whereas states where the agent can move to have their reward shown according
to the colourbar.

batch. For the MMD losses, the MMD between the two batches is calculated. The 8 expert
trajectories of length 380 get split into 304 10-step sections. We parameterise the reward model
as a 4-layer Multi-Layer Perceptron (MLP). Details of the architectural characteristics of the
network, as well as hyperparameter values, are given in Appendix [C} This reward model is
trained for 500 epochs. The loss function curves are shown in Figure
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Figure 13: Distance metric for the three different variations of our method as a function of
training epoch for the Large Maze training. From left to right: MSE, MMD with Gaussian
kernel, MMD with Matern kernel.

Evaluation. We evaluate the quality of the rollouts obtained by guided planning of the base
diffuser with the learnt value function, starting from the 8 starting points. We measure the
quality of the rollout based on its return under the true reward model. To evaluate the similarity
between value functions, we randomly sample trajectories from the dataset used to train the
base diffuser, and calculate the ERC (see Section [2.2.4)) between the return of these trajectories
according to the learnt reward model, and the return according to the true reward model. In
Table [2, "Base Diffuser” represents the trained base Diffuser without any guide and ”Diffuser
(True Reward)” represents the trained base Diffuser with the true reward function as a guide.
Note the ERC is only calculated for the methods which learn an explicit value function.

Results. Table [2[shows the return of rollouts according to each of the methods after learning,
as well as the ERC between the return of trajectories according to the learnt reward model,
and the return according to the true reward. Figure [14] shows example output trajectories for
each method.
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Table 2: Reward of guided rollouts (averaged over 32 rollouts) and ERC (calculated using 100
rollouts of the base Diffuser dataset) for Large Maze training,.

Method Return 7 ERC |
Base Diffuser 14156.37 £3849.58 —
Diffuser (True Reward) 22693.68 +4109.22

Diffuser (Learnt MSE Reward) 14639.58 +£4367.54  0.662

Diffuser (Learnt MMD-Gauss Reward)  16150.08 £5149.77  0.653
Diffuser (Learnt MMD-Matern Reward) 14958.32 £5275.93  0.663

Behaviour Cloning 17917.14 £4074.49
GAIL 16616.25 +£3506.86 ——
AIRL 18575.12 +£5033.36  0.696

Discussion. Firstly, despite Figure showing that rollouts with the true reward do not
reach the optimal part of the maze, Table [2| shows that the true reward does guide the Diffuser
towards areas of higher reward, even if not to the optimal ones. While we observe learning in all
variations of our method, improvements in performance for MSE and MMD with Matern kernel
are quite limited, and well within standard deviation range. MMD with Gaussian kernel shows
more significant improvements in performance, but still remains far from the performance of
the Diffuser guided by the true reward. The overall high values of ERC show our method has
failed to learnt a reward function that is similar to the true reward. We hypothesise this is
due to the environment dynamics gap present in our expert trajectories, and analyse whether
this gap is present in Section |4.1.2] The high standard deviations across all results have three
possible explanations: firstly, the small number of rollouts over which performance was averaged
(32 instead of 100) due to computational constraints, but also the high variance in behaviour:
for specific start points, different seeds will result in either the agent getting completely stuck
around its starting point, or in the agent almost making it to the optimal part of the maze.
Finally, as our reward function is coordinate-based, and we choose 8 different testing starting
points, the return of each trajectory is highly dependent on its starting point.

Figure [14] shows example output trajectories after learning for the different algorithms. Note
that AIRL learns near-optimal behaviour for certain starting points, but gets completely stuck
in one place for others. On the other hand, Behaviour Cloning’s trajectories do not go as
directly to the optimal section of the maze, but the method is also less likely to get "stuck”.
Regarding the three variations of our method, none achieve behaviour that seems optimal.
Regardless, MMD with Gaussian Kernel is the only one to obtain behaviour that somewhat
resembles expert behaviour, and its trajectories, when not stuck, move in the correct direction
to achieve the optimal section of the maze (unlike the MSE trajectories).
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Figure 14: Example output trajectories in the Large Maze after learning by different algo-
rithms. Each row is a different starting point. Each column is a different method, from top to
bottom: MSE, MMD with Gaussian kernel, MMD with Matern Kernel, BC, GAIL and AIRL.

Resembling the result obtained for the U-Maze, our method once again obtains a value function
with lower ERC than AIRL. However, it is valuable to note a value of ERC around 0.65 still
only shows a small correlation between returns, and thus all value functions obtained are
poor (for this choice of evaluation metric) approximations of the true reward function. We
hypothesise that the smaller values of ERC for our method in the Large Maze, as well as the
U-Magze, are a benefit of the Diffuser set-up: while for AIRL the algorithm must learn both the
environment dynamics and the value function, for our method the algorithm can use the expert
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data to only alter the value function, thus extracting more information from the data. Further
work should study the effects on performance of reduced or increased expert dataset sizes. As
for the U-Maze, we hypothesise that the base Diffuser learnt environment dynamics damage
our method’s performance, as the output trajectories are still impacted by the base Diffuser’s
training distribution, which is not at all optimal under our reward function. Notwithstanding, a
stronger value function similarity metric should be used before stronger conclusions are drawn.

All three baselines outperform our method. Importantly, none of them reach similar perfor-
mance to the True Reward. Thus we hypothesise that our expert trajectories (which are plans,
not rollouts) are not appropriate for either imitation learning or reward function learning.

4.1.2 Analysis of the Diffuser’s environment model

As previously discussed, plans were used as expert trajectories for learning in the Large Maze.
Both our method and the three baselines struggled to learn the true reward function (or to act
according to it), and we hypothesised that this is because the plans used as expert trajectories
are sub-optimal, in the sense that they reflect the environment dynamics according to the base
Diffuser, and not the true environment dynamics. Thus, learning to replicate such plans does
not actually result in rollouts in the environment that are optimal. In this section we study
the environment dynamics learnt by the Diffuser, and their impact on the quality of plans.

Firstly, we aim to find how the base Diffuser’s knowledge of the true environment dynamics
varies across the large maze. To do so, we select 500 points uniformly across the maze. For
each point, the agent plans, and we select the first action a and next state s’ of that plan.
Thus, for each of the 500 points, we have a tuple (s,a,s’). Note that this reflects what next
state s’ the agent thinks it will be if it takes action a from state s. For each tuple, we set the
environment state as s, take the action a, and receive a true next state s’. We then compare
the MSE between the vectors s’ and s”. This is a measure of the difference between the true
next state, and the next state according to the diffuser dynamics. As the action a is the same
for both cases, there is no effect of the policy in this metric. We plot a heatmap of the MSE
for different points in the large maze in Figure
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Figure 15: Dynamics’ prediction MSE as a function of the maze coordinates, averaged over
the first step of 500 plans with uniformly sampled start points.
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Firstly, note that the bottom right corner (exactly the optimal section of the maze according
to our true reward model) is where the Diffuser’s dynamics are the most wrong. This is to
be expected: reward-agnostic trajectories in the base Diffuser’s training dataset very rarely
reach this specific part of the maze. Secondly, we observe a few specific zones where the learnt
dynamics are particularly wrong, as seen in Figure [I6] These coincide with some of the start
points of our expert plans. Thus, while one may think the expert plans in Figure (11| would
reach the maze (as it looks like they would), they actually seem to get stuck (as seen in Figure
partly because the environment dynamics have not been fully learnt in certain sections of
the magze.

Figure 16: Dynamics’ prediction MSE heatmap, with highlighted (in red) high MSE areas
which coincide with areas where rollouts get stuck.

In Figure we analysed the quality of the learnt environment dynamics in the first step of
a plan. As the Diffuser does not plan autoregressively, it does not in theory suffer from the
typical compounding error in planning. However, we decided to study the quality of the plan
as a function of the planning step. As for the previous case, we sample 500 starting points
uniformly in the large maze. For each starting point, we plan 384 steps ahead (typical horizon
used in the large maze). We separate each plan in (s, ay, s;,,) tuples, for plan step t. We
then calculate the MSE between (s, at, s),1) and (s, s, s{,). Figure [17| shows the MSE as a
function of the planning step ¢.
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Figure 17: Dynamics’ prediction MSE as a function of the plan step, averaged over 500 plans
with uniformly sampled start points. The planning horizon for the Large Maze is 384.
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Firstly, note that the error on the first step of a plan is consistently larger than any of the
other first 25 steps. Secondly, except for a spike at ¢ = 30 (for which we have not found a
particular explanation), the dynamics error remains somewhat stable for the first 225 planning
steps. However, this error grows for the last 150 steps of a plan, and in particular in the last
100 steps. This is an interesting phenomenon that is quite unexpected for the Diffuser, as it is
expected that the method does not suffer from compounding planning error. While we leave
as future work to understand the underlying cause for this growing error, we note that, as
per Algorithm |5, we split expert plans into K-step trajectories (K = 10 in this case). Thus,
the latter parts of a plan get split into expert trajectory sections with very large environment
dynamics’ MSE. Thus, it is expected that these sections will be very poor expert datapoints,
and can mislead learning.

Overall, our method fails to accurately learn a value function and behave according to it in the
Large Maze. We show that our expert plans are not suitable for this task, and contain significant
gaps in their perceived environment dynamics. However, it is important to note that while
AIRL did not achieve optimal behaviour, it achieved significantly better performance than our
method, despite being trained on the same flawed plans. Future work should study the reason
behind this gap in performance. Nevertheless, as AIRL does not achieve optimal behaviour
(and neither does the Diffuser with the true reward function as guide), it is paramount that a
more careful design of expert trajectories is performed. While different reward functions were
informally attempted in the aim to fix this issue (without success), it is possible that smarter
reward models could generate optimal rollouts. In particular, a non-dense reward function
(that is, a reward function that only gives reward at a certain state, as opposed to giving
coordinate-based rewards at any point of the maze) could potentially generate appropriate
expert trajectories. However, such non-dense reward functions are commonly harder (and much
less sample efficient) to learn. Finally, we note that our reward network was a simple 4-layer
MLP. Previous work [38] 36] used much more complex networks, in particular value networks
where the value guide is dependent on the diffusion step. While learning diverged when we
attempted this direction, it is possible a more complex network could unlock performance in this
much more complicated maze. We propose these two directions as future work, but highlight
the importance behind obtaining expert trajectories with better quality before reaching stronger
conclusions about any other aspects of learning in our method.

4.2 HalfCheetah

Our experimental setup is significantly different for the HalfCheetah environment. In the
maze environments, we hand-crafted a true reward function, built trajectories that would be
considered as optimal (or near optimal) under this reward, and used our method to learn an
approximation of the true reward function. For the HalfCheetah environment, we train a base
diffusion model on a dataset of low-reward trajectories, use a dataset of high-reward trajectories
as expert trajectories, and aim to learn a reward function that can align the Diffuser samples
towards the high-reward distribution. Thus, we evaluate the quality of the trajectories based
on the reward signal that is inherent to the environment. In the HalfCheetah case, this reward
is positive the further the agent moves forward, and has a negative penalty term for actions
with large cost. For more information about this environment see Appendix [B]

Datasets. The Half-Cheetah environment has different datasets, with different quality of
trajectories. ”Expert” is a 1 million transition dataset, obtained from sampling from a policy
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trained to completion with Soft Actor-Critic [99]. ”"Medium” is a 1 million transition dataset,
obtained from a policy trained to achieve below half of the return of the expert. ”Medium-
Replay” uses the replay buffer of the training a policy up to the performance of ”Medium?”.
Thus, initial samples have very low reward, and reward improves towards the latter parts of the
dataset as the training agent improved its performance and incorporated good trajectories in
its replay buffer. Regardless, we only randomly sample from this dataset, discarding any order.
Table [3| shows the average return of trajectories in each of the three datasets. Furthermore,
the table shows the average L2 norm of the action vector of trajectories in each dataset. This
metric will be analysed in the discussion.

Table 3: Average return of 1000-step trajectories, and average action vector L2 norm, in
different HalfCheetah datasets.

Dataset Return Action L2 Norm
Medium-Replay  285.54 £179.67 2.37 £0.63
Medium 442.01 +£106.52 2.35 £0.69
Expert 1001.77 +£226.37 2.40 +0.48

All datasets in the HalfCheetah environment are automatically divided in K-step sub-trajectories,
where K is the horizon used for the base Diffuser. As we use K = 4 [38], we automatically get
datasets of 4-step sub-trajectories. Thus, we can skip the pre-processing step of our method,
described in Algorithm [4 Note that Table [3] was created taking into account 1000-step trajec-
tories, as this will be the length used for evaluation.

4.2.1 Base experiment

Base Diffuser Training. The base Diffuser was trained on 200 reward-agnostic trajectories,
each of length 1000, part of the Medium-Replay dataset. The planning horizon was chosen as
4, and the number of diffusion steps as 20. Nutti et al. [38] showed this was an appropriate
choice under a guidance scale of 0.001, and thus we also chose this scale. Training details are
shown in Appendix [C]

Expert trajectories. The expert trajectories were chosen as 100 thousand randomly sam-
pled 4-step sub-trajectories from the Expert HalfCheetah dataset [40]. The three baselines
were trained exclusively on 1600 1000-step trajectories from the Expert HalfCheetah dataset,
ensuring the same number of total training transitions as for our method.

Experimental details. As the diffusion horizon is chosen as 4, we automatically choose the
number of steps of our method to be K = 4 (as this cannot be larger than the diffusion horizon).
We consider the distance metric M between a 10-step section of an expert trajectory and the
first 10 steps of a sampled plan with start state the same as the expert trajectory’s section.
For the MSE, each individual sample in a batch gets compared to its respective sample in the
expert trajectory batch. For the MMD losses, the MMD between the two batches is calculated.
We parameterise the reward model as a 4-layer Multi-Layer Perceptron (MLP). Details of the
architectural characteristics of the network, as well as hyperparameter values, are given in
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Appendix [C] The reward model is trained for 250 epochs. The loss function curves are shown
in Figure [I8]
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Figure 18: Distance metric for the three different variations of our method as a function of
training epoch for the HalfCheetah environment. From left to right: MSE, MMD with Gaussian
kernel, MMD with Matern kernel.

Evaluation. We evaluate the quality of the rollouts obtained by guided planning of the base
Diffuser with the learnt value function. As this is the case in the HalfCheetah environment,
the starting point (barring some added noise) is always the same. We measure the quality of
the rollout based on the return given by the environment. To evaluate the similarity between
value functions, we calculate the ERC between the value estimate for a trajectory, and the
return given by the environment for that trajectory (which one can think of as the true reward
function). We use a mixed dataset with 50% medium-replay samples, and 50% expert samples,
and guarantee these were not seen during either base Diffuser or reward model training. In
Table , ”Base Diffuser” represents the trained (on the medium-replay Dataset) base Diffuser
without any guide. Note the ERC is only calculated for the methods which learn an explicit
value function.

Results. Table [] shows the return of rollouts according to each of the methods after learning,
as well as the ERC between the return of trajectories according to the learnt reward model,
and the return according to the true reward.

Table 4: Reward of guided rollouts and ERC of base dataset (averaged over 100 rollouts) for
HalfCheetah training.

Method Return 1 ERC |
Base Diffuser 276.49 £74.28 ——
Diffuser (Learnt MSE Reward) -39.15 £0.95 0.758

Diffuser (Learnt MMD-Gauss Reward) -32.50 £1.08 0.807

Diffuser (Learnt MMD-Matern Reward)  -19.80 +18.00 0.698

Behaviour Cloning 1657.78 £45.62

GAIL 998.21 £231.52 ———
AIRL 1298.25 £152.04  0.757

Discussion. Firstly, we observe that the base Diffuser, trained on the Medium-Replay dataset,
achieves very similar performance to its training data. This implies that the environment
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dynamics seem to be properly learnt by the base Diffuser. However, recall that the Medium-
Replay dataset is far from optimal, and thus the base Diffuser learns dynamics that can, in
part, be corrupted due to the sub-par examples it is trained on.

We observe in Figure[1§|that learning is very unstable in this setting, in particular for the MMD-
based losses. Note that these loss curves are already the result of an informal parameter tuning
process, and thus the instability is unlikely to be fully due to hyperparameter choices. Gradients
and weight values were monitored throughout the training process (to monitor possible gradient
or weight exploding) and appeared, for the most part, to be standard. However, future work
should provide a proper analysis of how these values vary during training, and in particular
whether either of these explode when the loss function spikes. The results in Table 4| represent
the best performance over checkpoints (every 10 epochs) for each loss. We see that our method
consistently fails to learn high-reward behaviour. Furthermore, its performance is far below
the base Diffuser’s performance, implying that the guide learnt actually severely worsens its
performance. Note in particular the very low variances for both the MSE and MMD with
Gaussian kernel distances.

All ERC values are particularly high, showing that neither our method nor AIRL learn a value
function that is close to the environment reward. It is thus concluded that there is no significant
correlation between the two for any method, and thus the IRL task is not succefful in such a
setting. Regardless, MMD with Matern kernel clearly outperforms the other methods in terms
of ERC, which seems to also result in a higher return than other variations of our method.

Regarding the baselines, we see GAIL achieves similar performance to the expert dataset.
Quite surprisingly, both AIRL and Behaviour Cloning significantly outperform the dataset
they were trained on. We hypothesise that the particularly good performance of BC is due
to the HalfCheetah always having the same starting point (barring some noise): as the agent
always starts in the same state, the algorithm learns to mimic the high reward behaviours in
the dataset, without having to worry about exploration and out-of-distribution performance,
areas where BC naturally struggles. In the AIRL case, we hypothesise that the learning of a
value function allows the agent to clearly learn which states are valuable, and deterministically
act according to this value function.

As a first step in an analysis to understand the failure of our method, we hypothesised that
the very negative reward our method obtains could be due to the agent choosing actions with
very large norm. Appendix explains how the reward in the HalfCheetah environment is
composed of two terms: one positive term for how far the agent moves forward, and a negative
penalty for actions with large norm. Thus, we calculated the average L2 norm of the action
vector in the rollouts output by each method (the same rollouts used for Table , and compared
the L2 norm to those in Table [3]

The obtained results do not support our hypothesis. Firstly, there is no significant variation of
norm between the different HalfCheetah datasets. Secondly, it seems that the version of our
method that does best (MMD Matern) is also the only one to have L2 norm close to those in
the HalfCheetah dataset, which is significantly higher than the L.2 norm obtained by the other
variations of our method. It seems, thus, that for all variations of our method, the agent simply
falls and tries to act to get back up but fails to do so, resulting in a negative-only reward signal
from any actions it does to attempt to get back up. Note, however, that the action L2 norm of
the base Diffuser is significantly lower than the action L2 norm of the Medium-replay dataset it
was trained on. This mismatch should be investigated further, even if the base Diffuser seems
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to achieve the same return as the medium-replay dataset (Table .

Table 5: Action vector L2 norm averaged over 100 rollouts for methods learning on the
Halfcheetah environment.

Metric Action L2 Norm
Base Diffuser 1.77 £0.33
Diffuser (Learnt MSE Reward) 1.45 £0.01
Diffuser (Learnt MMD-Gauss Reward) 1.25 £0.38

Diffuser (Learnt MMD-Matern Reward) 2.48 +0.64

Further analysis ought to be conducted to understand why our method fails in such a setting.
Importantly, both the Diffuser [36] and Nutti et al. [38] (partly) succeeded in aligning behaviour
in such a setting. Both methods used a reward guide that also depended on the diffusion step
t. We attempted this but observed no learning, even after some informal hyperparameter
tuning. Regardless, this direction should be more carefully studied in the future, to clarify
whether a very simple reward model is the reason our method fails. A second possible reason
is due to the settings chosen for the Diffuserfor the Halfcheetah environment, where one uses a
planning horizon of only 4 steps (as opposed to 128 in the U-Maze and 384 in the Large Maze).
This was chosen due to Nutti et al. [38] showing this short planning horizon worked if the
guidance scale was changed to 0.001. It is possible that this change actually worsens learning
in our environment, and that the original planning horizon of 32 (and larger guidance scale)
in the Diffuser [36] is necessary to properly learn the long-term return in this environment.
Furthermore, the guidance scale is a multiplicative term on the gradient of the reward model,
and thus a larger guidance scale allows for the guide to have a stronger effect on the diffusion
process.

5 Conclusion

In this report we introduce a method to learn a reward function using the Diffuser, an offline
trajectory-level diffusion model. We assume we have access to a base Diffuser trained on reward-
agnostic trajectories in an environment, and a dataset of expert trajectories that we wish to
imitate. We derive our method from a classifier-guided diffusion perspective, and parameterise
the diffusion model’s guide as a neural network that we can learn. We propose an algorithm to
learn this reward/guide network based on a loss function (between sampled Diffuser plans and
expert trajectories) in trajectory space, and present three possible loss functions. In learning
how to guide the diffusion process, we not only obtain a reward function, but also behaviour
that imitates the expert trajectories given.

We evaluate our method on three environments, with varying degrees of complexity. In the
U-Maze [40], we observe that our method achieves near optimal behaviour, matching the per-
formance of the baselines (Behaviour Cloning, GAIL and AIRL). Despite the similarities in
behaviour, we conclude via an analysis of the Episodic Return Correlation distance [39] that
our method learns a reward function that is closer to the true reward than our baseline (AIRL).
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When extending our method to the Large Maze [40], we face difficulties in obtaining high-
quality expert trajectories. We attempt an imperfect fix to this issue by considering expert
plans instead of expert rollouts, but our method fails to both learn expert behaviour and to
learn the true reward function. We further analyse the environment dynamics learnt by the
Diffuser, concluding these lead to low quality plans that consequently lead to our method’s
poor performance. We finish by extending our method to the HalfCheetah environment, where
our method fully fails to not only match the baselines, but learn altogether. We face large
instabilities during training of the reward function, which we hypothesise is due to two main
factors: the very simple reward network used (in particular one whose output does not depend
on the diffusion step) and the small number of diffusion steps (which does not allow for proper
guide contribution throughout a sufficient number of diffusion steps).

In the future, the main focus should be on studying the viability of our method in these more
complex environments. For the Large Maze, obtaining near-optimal expert trajectories should
be the focus, whereas we hypothesise that our method’s failure in HalfCheetah can be fixed
by tuning of training details (hyperparameters and architectures) and analysis of the current
training instabilities.
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A Gradient Backpropagation - Derivation

Let us define the forward diffusion process as:

C](Tt|Tt—1) = N(Tt; V31— BiTi—1, Bt]l) (59)

where ¢ denotes the diffusion step. Using the reparameterization trick, and defining oy = 1 — 4
and &; = H§=1 a;, we have that:

T = VouTi—1 + V1 — e (60)
= Vaymo + V1 — aze (61)

Thus, it follows that:

We aim to learn an approximation pg(1;_1|7) = N (7_1; e(7, 1), Lo (73, 1)) to q(1i-1|7s,70). As
shown in [27], this is equivalent to predicting:

1 1-— (o %
T, t) = — (1 — ———=¢ 63
MG( t ) aft( t m t) ( )
It is shown in [27] that one can instead parameterise ¢y and thus predict:
1 1— (673
T, t)= — |77 — —————€p(T] 7t 64
/LH( t ) oy |: t \/1_707"] 9( t ):| ( )
Once €y(7t,t) has been learnt, one can obtain samples via the equation:
1 1-— Qi
Ti_1=— |7t — ——¢9(7, 1) | +0u2 65
t—1 at |: t m 9( t >:| t ( )

Based on [26], we can guide this sampling process of a prior towards sampling from a posterior
distribution obtained by the likelihood p4(y|7:) by performing each step of reverse process as:

1 l—«
T 1= o |:Tt — ﬁee(n,t)} + sXV,, log ps(y|m) + ov2 (66)

where s is a learning rate-like parameter.
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Referring to the control-as-inference graphical model [90], one can express the likelihood of a
time-step being optimal as

p(Or = 1) = exp(r(s, ar)) (67)

Under this assumption, [36] shows that:

V- log py(Orr|m) = Vo ) r(se, ar) (68)
V. R(r) (69)

where R(7) is the return of the entire trajectory 7.

Thus, the guided reverse process is:

1 1-— (673
= — _— )| +sXV,LR + 70
Tt—1 t Tt mﬁe(ﬂs ) S (11) + 012 (70)

The loss function is defined as a mean squared error such that:
L =||r. — moll3 (71)

Under this loss function, its gradient with respect to the reward model’s parameters ¢ is:

2
11—«

VoL = Vy||Te — \/— \/—\/1_17051 o(m1,1) + sXV,, log ps(y|m1) i (72)

[ 1 87’1 l—ay  Oe(m, 1) 0

=9 - 2 —1

|| H -Te \/— a¢ \/— /—1 — Oél a¢ + a(ba ng¢(y|7—1> (73)

[ 1 87’1 1—oy @60(7—1; ]-) 0 0
=9 - ) 4
1-AF|re = Vo 06 JavI—ar 00 0 o7, 1) (74)
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B Environments

B.1 Maze2D: U-Maze and Large Maze

Both the U-Maze and the Large Maze are part of the Maze2D collection of environments [40].
They share the same state and action spaces. The only difference between the two environments
is the maze configuration. The respective maze configurations are shown in Figure

Figure 19: Layout for the U-Maze (left) and Large Maze (right) environments. Walls are
shown in grey. Sections in which agents can move are shown in white. X-coordinate is horizon-
tal, Y-coordinate is vertical. Origin at top left.

The Maze2D environments consist of moving a force-actuated ball in a 2D (coordinates = and
y) environment to reach some user-defined goal. The state and action spaces are shown in
Table [6] and Table [7] respectively.

Table 6: State/observation space of the Maze2D environments. ”Index” refers to the index of
the respective observation in the state array expected by the environment.

Index Action Min value Max value
0 x-axis coordinate -00 00
1 y-axis coordinate -00 00
2 Velocity in the x-axis coordinate -00 00
3 Velocity in the y-axis coordinate -00 00

Table 7: Action space of the Maze2D environments. ”Index” refers to the index of the
respective action in the action array expected by the environment.

Index Action Min value Max value
0 Force in the x-axis direction -1 1
1 Force in the y-axis direction -1 1

Note that while the coordinate elements of the state vector are each allowed to take any value
in the range (—o00,0), the limits of each individual maze mean the agent sticks to specific
ranges of coordinates, seen in Table
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Table 8: Coordinate limits for each of the considered Maze2D environments.

Environment x-axis y-axis

U-Maze (0,5)  (0,5)
Large Maze (0,12) (0,9)

Episodes are usually taken to have a maximum number of 300 steps. Typical implementations
terminate an episode when the agent reaches its goal state. However, as we do not consider
one specific goal state, we run all episodes to 300 steps. The start state can be selecte by the
user, in any of the allowed state vector elements’ allowed ranges.

B.2 HalfCheetah

The HalfCheetah environment [40] consists of controlling a 2 dimensional robot, with 8 joints
and 9 links. The agent can control the amount of torque applied to 6 of its joints (its torso
and head are fixed) across its (front and back) thighs, feet and shins. The state of the agent
consists of the positions and velocities of its different body parts. The state and action spaces

are shown in Tables [9 and [I0]

Table 9: State/observation space of the HalfCheetah environment. ”Index” refers to the index
of the respective observation in the state array expected by the environment.

Index Action Min value Max value
0 z-coordinate of front tip -00 %)
1 Angle of front tip -00 00
2 Angle of back thigh rotor -00 00
3 Angle of back shin rotor -00 00
4 Velocity of the front tip in the x-axis coordinate -00 00
5 Velocity of the front tip in the x-axis coordinate -00 00
6 Angular velocity of front tip -00 00
7 Angle of front foot rotor -00 00
8 x-coordinate of front tip -00 %)
9 y-coordinate of front tip -00 o0
10 Angular velocity of front tip -00 00
11 Angular velocity of back thigh rotor -00 00
12 Angular velocity of back shin rotor -00 00
13 Angular velocity of back foot rotor -00 o0
14 Angular velocity of front thigh rotor -00 00
15 Angular velocity of front shin rotor -00 00
16 Angular velocity of front foot rotor -00 00
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Table 10: Action space of the HalfCheetah environment. ”Index” refers to the index of the
respective action in the action array expected by the environment.

Index Action Min value Max value
0 Torque applied to the back thigh rotor -1 1
1 Torque applied to the back shin rotor -1 1
2 Torque applied to the back foot rotor -1 1
3 Torque applied to the front thigh rotor -1 1
4 Torque applied to the front shin rotor -1 1
5 Torque applied to the front foot rotor -1 1

Figure 20| shows frames of an HalfCheetah trajectory.

Figure 20: Example frames from a trajectory in the HalfCheetah environment. The agent
initially moves forward, but eventually heads towards a fall (last frame).

The agent’s goal is to move forward as much as possible, while prioritising actions with small
norm. More specifically, the reward given by the environment can be described via the terms

e Forward Reward: Zafer — Thefore, Where dt is the frame rate parameter (usually set to
0.05), and ZZager and TTpefore Tepresent respectively the actions at ¢ 4+ 0.05 and ¢.

e Action Penalty: 0.1 * sum(action?) for each action in the action sapce vector. It is thus
a term that penalises actions with large norm.

The reward is given by subtracting the action penalty from the forward reward. The initial
state is the state vector initialised with all elements 0, with some added noise.
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C Training Details

C.1 Base Diffuser Training

We first show the main diffusion settings. This defines the Diffuser architecture for each envi-
ronment.

Table 11: Diffusion settings for different environments.

Environment Planning Horizon Number of Diffusion Steps

U-Maze 128 64
Large Maze 384 256
HalfCheetah 4 20

We then show the values of hyperparameters used for training of the base Diffuser in each
environment. These parameters are named according to the Diffuser framework.

Table 12: Parameters for the base Diffuser training in each environment.

Parameter U-Maze Large Maze HalfCheetah

Learning rate 2e-4 2e-4 2e-4
Batch size 32 32 32
Training steps 2e6 2e6 le6

EMA decay 0.995 0.995 0.997
Loss L2 L2 L2

C.2 Training of Reward Model

We show the values of hyperparameters (except for learning rate) used for learning of a re-
ward model (our method). Several of these parameters are named according to the Diffuser

framework.

Table 13: Parameters for the learning of a reward model in each environment.

Parameter U-Maze Large Maze HalfCheetah
MLP Hidden Dimensions (384,128,64) (1024,512,128) (64,32,16)
MLP Activation ReLLU ReLLU ReLLU
Batch size 270 32 256
Epochs 100 500 250
Guidance scale 0.1 0.1 0.001
Discount factor 0.995 0.995 0.99
Scale grad by standard deviation True True True
t_stopgrad 2 2 0

Number of guide steps 2 2 2
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Regarding the learning rate, its value was (informally) tuned depending on the distance metric
M used for each environment.

Table 14: Learning rate used for reward learning using different distance metrics M in different
environments.

Environment Distance Metric Learning Rate

MSE be-4

U-Maze MMD Gauss 2e-3
MMD Matern 2e-3

MSE le-3

Large Maze MMD Gauss 2e-3
MMD Matern 2e-3

MSE 2e-3

HalfCheetah MMD Gauss Se-4

MMD Matern le-3
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D Additional Results

D.1 U-Maze Base Diffusion

Figure 21: Example datapoints from the reward-agnostic dataset used to train the Base
Diffuser in the U-Maze environment. Trajectories shown in colour, from blue (start) to red

(end).
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Figure 22: Example diffusion outputs after 1000 (top 2 rows) and 100000 (bottom 2 rows)
training steps. Trajectories shown in colour, from blue (start) to red (end).
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D.2 Large Maze Base Diffusion

End End End End End
Beginning Beginning Beginning Beginning Beginning
End End End End End
Beginning Beginning Beginning Beginning Beginning

End End End End End
nnnnn Beginning Beginning Beginning inning
End End End End End
Beginning Beginning Beginning Beginning Beginning
End End End End End

Figure 23: Example datapoints from the reward-agnostic dataset used to train the Base

Diffuser in the Large Maze environment. Trajectories shown in colour, from blue (start) to red
(end).
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Beginning Beginning Beginning Beginning Beginning

End End End End End

Beginning Beginning Beginning Beginning Beginning

End End End End End

Beginning Beginning Beginning Beginning Beginning
End End End End End

Beginning Beginning Beginning Beginning Beginning
End End End End End

Figure 24: Example diffusion outputs after 1000 (top 2 rows) and 743000 (bottom 2 rows)
training steps. Trajectories shown in colour, from blue (start) to red (end).
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E Background - Extra Information

E.1 Reward Function Similarity Metrics

Gleave et al [39] also introduce NPEP as a baseline and analyse where it fails. Nearest Point in
Equivalence Class (NPEC) is defined as the minimum L? distance between equivalence classes.

Definition 10 (L? Distance) Let D be the coverage distribution over transitions (s,a,s’) and
let p > 1. The LP distance between two reward functions R4 and Rp is the LP norm of the

1
difference between them, that is Di»(Ra, Rp) = []E(w’s/)ND\RA(s, a,s') — Rg(s,a, 3’)|p] P

Definition 11 (Reward Function equivalence) Two reward functions R4 and Rp are said
to be equivalent, Rx = R, for fized tuple (S, A, ) iff there exists a constant A > 0 and bounded
potential function ® : S — R such that for any and all s,s' € S and a € A:

Rip(s,a,s) = ARa(s,a,s") +~yP(s") — D(s). (75)

Definition 12 (NPEC) Let D be the coverage distribution over transitions (s,a,s’) and let
p > 1 be the distance power. Let DS prpo(Ra, Rp) = Rlin7f3 Di»p(R',Rg). The nearest
=Ra

point in equivalence class (NPEC) between two reward functions Ra and Rp is defined as
Dnprc(Ra,Re) = DY ppc(RasRe)/ DY prc(0,R) when DY ppe(Ra, Re) # 0, and given by
DY ppc(Ra, Re) = 0 otherwise.

NPEC is not a pseudo-metric. Furthermore, while it is invariant to potential shaping [39], it is
not robust to the choice of coverage function.

E.2 Score-Based Generative Models
E.2.1 Score Matching

Score matching [I00] was first introduced as a new way to estimate statistical models where
the distribution can only be evaluated up to a normalizing constant. The general idea is that
for a given energy model

p(x) = e @ (76)
the score function does not involve Z, that is

V.logp(r) = =V, f(z) (77)
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Thus, one can model this score function without knowledge of the distribution’s normalising
constant. Once this model has been learnt, sampled from the distribution p(x) can be obtained
using Langevin dynamics.

A model s(z, ) of this score function can be found by minimising
J(0) = Epw) [[| Ve logp(x) — s(z, 0)][3] (78)

However, computing this still requires access to the score function of the data V,logp(x).
To circumvent this issue, several methods, under the umbrella term of score matching meth-
ods, have been proposed to calculate this divergence, and thus allow for the learning of score
functions.

The original score matching method [100] shows that this L2-distance can be estimated with a
formula using only derivatives of the model score function, thus not requiring knowledge of the
data score function. More concretely, it shows that:

" 0s;(z,0 1
i=1 v

where C is a constant with respect to #, and thus can be disregarded in the minimisation process.
However, this method is not scalable to deep networks and high dimensional data [I0I] due to
the first term, which consists of the trace of the Jacobian of the probability distribution.

E.2.2 Variants of Score Matching

Thus, several methods have been introduced that avoid the computation of the trace term.
Firstly, sliced score matching [101] aims to minimise an objective of the same form, but ap-
proximates the trace term using random projections, such that:

1
T0,90) = By ey [0 Fas (.00 + 5 15(, )] 3 (50)

where the random projection term can be computed using forward mode auto-diff. Alterna-
tively, denoising score matching [102] aims to minimise a different objective. Firstly, the data
x is perturbed with noise according to ¢, (z'|x), and then the method performs score matching
to estimate the score of the perturbed distribution ¢, (2") = [ ¢, (2'|2)p(x)dz. This is shown to
be equivalent to minimising:

1

“Eq, (w2) () [|5(2",0) — Vo log g, («'|3)|]3] , (81)

J(0) =3

where the gradient term is easily available for simple choices of noise distributions such as
Gaussian noise.
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E.2.3 Noise-conditioned score networks (NCSNs)

Score function estimation is often severely inaccurate in low density regions, where few data-
points are available. These inaccuracies very easily lead to inaccurate Langevin dynamics (the
initial point is likely to be in a low density area), thus severely hindering the quality of the
samples obtained. One possible solution is to perturb data with noise, and train the score
model on a noisy version of the data, as done for denoising score matching [102]. Since deciding
on one single noise value is not straightforward, one can instead use multiple scales of noise
simulateously [81]. Thus, the data is perturbed with different levels o; of noise, and the score
model is trained on each of the noise levels such that sy(z, ) ~ V, log p,,(z) for each noise level
t =1,...,N. The training objective then becomes a weighted sum of L2-norms such that:

J(0) =Y ADE,, @) [[IValogpo, (x) — so(x,1)][3] (82)

i=1

By minimising it, we learn sy(z,1%), a noise-conditioned score network [8I]. After training, we
can use annealed Langevin dynamics [81] on this model to obtain samples from the probability
distribution.
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